Data is the indispensable fuel that drives the decision making of everything from governments, to major corporations, to sports teams. Its value is almost beyond measure. But what if that data is either unavailable or problematic to access? That’s where synthetic data comes in. This book will show you how to generate synthetic data and use it to maximum effect.
Synthetic Data for Deep Learning begins by tracing the need for and development of synthetic data before delving into the role it plays in machine learning and computer vision. You’ll gain insight into how synthetic data can be used to study the benefits of autonomous driving systems and to make accurate predictions about real-world data. You’ll work through practical examples of synthetic data generation using Python and R, placing its purpose and methods in a real-world context. Generative Adversarial Networks (GANs) are also covered in detail, explaining how they work and their potential applications.
After completing this book, you’ll have the knowledge necessary to generate and use synthetic data to enhance your corporate, scientific, or governmental decision making.Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Data is the indispensable fuel that drives the decision making of everything from governments, to major corporations, to sports teams. Its value is almost beyond measure. But what if that data is either unavailable or problematic to access? That’s where synthetic data comes in. This book will show you how to generate synthetic data and use it to maximum effect.
Synthetic Data for Deep Learning begins by tracing the need for and development of synthetic data before delving into the role it plays in machine learning and computer vision. You’ll gain insight into how synthetic data can be used to study the benefits of autonomous driving systems and to make accurate predictions about real-world data. You’ll work through practical examples of synthetic data generation using Python and R, placing its purpose and methods in a real-world context. Generative Adversarial Networks (GANs) are also covered in detail, explaining how they work and their potential applications.
After completing this book, you’ll have the knowledge necessary to generate and use synthetic data to enhance your corporate, scientific, or governmental decision making.Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,90 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 2,31 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Buchpark, Trebbin, Germania
Condizione: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Codice articolo 40308159/1
Quantità: 7 disponibili
Da: Berliner Büchertisch eG, Berlin, Germania
Softcover. Condizione: Gut. Auflage: 1st ed. 239 Seiten Gutes Exemplar, geringe Gebrauchsspuren, Cover/SU berieben/bestoßen, innen alles in Ordnung; Good copy, light signs of previous use, cover/dust jacket shows some rubbing/wear, interior in good condition B230811ah93 ISBN: 9781484285862 Sprache: Englisch Gewicht in Gramm: 472. Codice articolo 663953
Quantità: 1 disponibili
Da: Rarewaves.com UK, London, Regno Unito
Paperback. Condizione: New. 1st ed. Data is the indispensable fuel that drives the decision making of everything from governments, to major corporations, to sports teams. Its value is almost beyond measure. But what if that data is either unavailable or problematic to access? That's where synthetic data comes in. This book will show you how to generate synthetic data and use it to maximum effect.Synthetic Data for Deep Learning begins by tracing the need for and development of synthetic data before delving into the role it plays in machine learning and computer vision. You'll gain insight into how synthetic data can be used to study the benefits of autonomous driving systems and to make accurate predictions about real-world data. You'll work through practical examples of synthetic data generation using Python and R, placing its purpose and methods in a real-world context. Generative Adversarial Networks (GANs) are also covered in detail, explaining how they work and their potential applications.After completing this book, you'll have the knowledge necessary to generate and use synthetic data to enhance your corporate, scientific, or governmental decision making.What You Will LearnCreate synthetic tabular data with R and PythonUnderstand how synthetic data is important for artificial neural networksMaster the benefits and challenges of synthetic dataUnderstand concepts such as domain randomization and domain adaptation related to synthetic data generationWho This Book Is ForThose who want to learn about synthetic data and its applications, especially professionals working in the field of machine learning and computer vision. This book will also be useful for graduate and doctoral students interested in this subject. Codice articolo LU-9781484285862
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. Codice articolo B9781484285862
Quantità: 2 disponibili
Da: Rarewaves.com USA, London, LONDO, Regno Unito
Paperback. Condizione: New. 1st ed. Data is the indispensable fuel that drives the decision making of everything from governments, to major corporations, to sports teams. Its value is almost beyond measure. But what if that data is either unavailable or problematic to access? That's where synthetic data comes in. This book will show you how to generate synthetic data and use it to maximum effect.Synthetic Data for Deep Learning begins by tracing the need for and development of synthetic data before delving into the role it plays in machine learning and computer vision. You'll gain insight into how synthetic data can be used to study the benefits of autonomous driving systems and to make accurate predictions about real-world data. You'll work through practical examples of synthetic data generation using Python and R, placing its purpose and methods in a real-world context. Generative Adversarial Networks (GANs) are also covered in detail, explaining how they work and their potential applications.After completing this book, you'll have the knowledge necessary to generate and use synthetic data to enhance your corporate, scientific, or governmental decision making.What You Will LearnCreate synthetic tabular data with R and PythonUnderstand how synthetic data is important for artificial neural networksMaster the benefits and challenges of synthetic dataUnderstand concepts such as domain randomization and domain adaptation related to synthetic data generationWho This Book Is ForThose who want to learn about synthetic data and its applications, especially professionals working in the field of machine learning and computer vision. This book will also be useful for graduate and doctoral students interested in this subject. Codice articolo LU-9781484285862
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26395225407
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18395225397
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Data is the indispensable fuel that drives the decision making of everything from governments, to major corporations, to sports teams. Its value is almost beyond measure. But what if that data is either unavailable or problematic to access? That s where . Codice articolo 605115455
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 402200288
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 45593593
Quantità: Più di 20 disponibili