Articoli correlati a Finding Ghosts in Your Data: Anomaly Detection Techniques...

Finding Ghosts in Your Data: Anomaly Detection Techniques with Examples in Python - Brossura

 
9781484288696: Finding Ghosts in Your Data: Anomaly Detection Techniques with Examples in Python

Sinossi

Discover key information buried in the noise of data by learning a variety of anomaly detection techniques and using the Python programming language to build a robust service for anomaly detection against a variety of data types. The book starts with an overview of what anomalies and outliers are and uses the Gestalt school of psychology to explain just why it is that humans are naturally great at detecting anomalies. From there, you will move into technical definitions of anomalies, moving beyond "I know it when I see it" to defining things in a way that computers can understand.

The core of the book involves building a robust, deployable anomaly detection service in Python. You will start with a simple anomaly detection service, which will expand over the course of the book to include a variety of valuable anomaly detection techniques, covering descriptive statistics, clustering, and time series scenarios. Finally, you will compare your anomaly detectionservice head-to-head with a publicly available cloud offering and see how they perform.

The anomaly detection techniques and examples in this book combine psychology, statistics, mathematics, and Python programming in a way that is easily accessible to software developers. They give you an understanding of what anomalies are and why you are naturally a gifted anomaly detector. Then, they help you to translate your human techniques into algorithms that can be used to program computers to automate the process. You’ll develop your own anomaly detection service, extend it using a variety of techniques such as including clustering techniques for multivariate analysis and time series techniques for observing data over time, and compare your service head-on against a commercial service.


What You Will Learn
  • Understand the intuition behind anomalies
  • Convert your intuition into technical descriptions of anomalous data
  • Detect anomalies using statistical tools, such as distributions, variance and standard deviation, robust statistics, and interquartile range
  • Apply state-of-the-art anomaly detection techniques in the realms of clustering and time series analysis
  • Work with common Python packages for outlier detection and time series analysis, such as scikit-learn, PyOD, and tslearn
  • Develop a project from the ground up which finds anomalies in data, starting with simple arrays of numeric data and expanding to include multivariate inputs and even time series data

Who This Book Is For

For software developers with at least some familiarity with the Python programming language, and who would like to understand the science and some of the statistics behind anomaly detection techniques. Readers are not required to have any formal knowledge of statistics as the book introduces relevant concepts along the way.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

?Kevin Feasel is a Microsoft Data Platform MVP and CTO at Faregame Inc, where he specializes in data analytics with T-SQL and R, forcing Spark clusters to do his bidding, fighting with Kafka, and pulling rabbits out of hats on demand. He is the lead contributor to Curated SQL, president of the Triangle Area SQL Server Users Group, and author of PolyBase Revealed. A resident of Durham, North Carolina, he can be found cycling the trails along the triangle whenever the weather is nice enough.

Dalla quarta di copertina

Discover key information buried in the noise of data by learning a variety of anomaly detection techniques and using the Python programming language to build a robust service for anomaly detection against a variety of data types. The book starts with an overview of what anomalies and outliers are and uses the Gestalt school of psychology to explain just why it is that humans are naturally great at detecting anomalies. From there, you will move into technical definitions of anomalies, moving beyond "I know it when I see it" to defining things in a way that computers can understand.


The core of the book involves building a robust, deployable anomaly detection service in Python. You will start with a simple anomaly detection service, which will expand over the course of the book to include a variety of valuable anomaly detection techniques, covering descriptive statistics, clustering, and time series scenarios. Finally, you will compare your anomaly detection service head-to-head with a publicly available cloud offering and see how they perform.

The anomaly detection techniques and examples in this book combine psychology, statistics, mathematics, and Python programming in a way that is easily accessible to software developers. They give you an understanding of what anomalies are and why you are naturally a gifted anomaly detector. Then, they help you to translate your human techniques into algorithms that can be used to program computers to automate the process. You’ll develop your own anomaly detection service, extend it using a variety of techniques such as including clustering techniques for multivariate analysis and time series techniques for observing data over time, and compare your service head-on against a commercial service.

What You Will Learn
  • Understand the intuition behind anomalies
  • Convert your intuition into technical descriptions of anomalous data
  • Detect anomalies using statistical tools, such as distributions, variance and standard deviation, robust statistics, and interquartile range
  • Apply state-of-the-art anomaly detection techniques in the realms of clustering and time series analysis
  • Work with common Python packages for outlier detection and time series analysis, such as scikit-learn, PyOD, and tslearn
  • Develop a project from the ground up which finds anomalies in data, starting with simple arrays of numeric data and expanding to include multivariate inputs and even time series data

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreApress
  • Data di pubblicazione2022
  • ISBN 10 1484288696
  • ISBN 13 9781484288696
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero edizione1
  • Numero di pagine376
  • Contatto del produttorenon disponibile

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,52 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 11,83 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781484288719: Finding Ghosts in Your Data: Anomaly Detection Techniques with Examples in Python

Edizione in evidenza

ISBN 10:  1484288718 ISBN 13:  9781484288719
Brossura

Risultati della ricerca per Finding Ghosts in Your Data: Anomaly Detection Techniques...

Immagini fornite dal venditore

Feasel, Kevin
Editore: Apress 11/10/2022, 2022
ISBN 10: 1484288696 ISBN 13: 9781484288696
Nuovo Paperback or Softback

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback or Softback. Condizione: New. Finding Ghosts in Your Data: Anomaly Detection Techniques with Examples in Python 1.43. Book. Codice articolo BBS-9781484288696

Contatta il venditore

Compra nuovo

EUR 39,91
Convertire valuta
Spese di spedizione: EUR 11,83
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Feasel, Kevin
Editore: Apress, 2022
ISBN 10: 1484288696 ISBN 13: 9781484288696
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781484288696

Contatta il venditore

Compra nuovo

EUR 45,15
Convertire valuta
Spese di spedizione: EUR 7,89
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Feasel, Kevin
Editore: Apress, 2022
ISBN 10: 1484288696 ISBN 13: 9781484288696
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44954406-n

Contatta il venditore

Compra nuovo

EUR 37,52
Convertire valuta
Spese di spedizione: EUR 17,52
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Feasel, Kevin
Editore: Apress, 2022
ISBN 10: 1484288696 ISBN 13: 9781484288696
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 44954406

Contatta il venditore

Compra usato

EUR 44,52
Convertire valuta
Spese di spedizione: EUR 17,52
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Feasel, Kevin
Editore: Springer, Berlin|Apress, 2023
ISBN 10: 1484288696 ISBN 13: 9781484288696
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Discover key information buried in the noise of data by learning a variety of anomaly detection techniques and using the Python programming language to build a robust service for anomaly detection against a variety of data types. The book starts with an ove. Codice articolo 697759064

Contatta il venditore

Compra nuovo

EUR 52,37
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Feasel, Kevin
Editore: Apress, 2022
ISBN 10: 1484288696 ISBN 13: 9781484288696
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44954406-n

Contatta il venditore

Compra nuovo

EUR 51,52
Convertire valuta
Spese di spedizione: EUR 17,80
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Feasel, Kevin
Editore: Apress, 2022
ISBN 10: 1484288696 ISBN 13: 9781484288696
Antico o usato Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 44954406

Contatta il venditore

Compra usato

EUR 52,28
Convertire valuta
Spese di spedizione: EUR 17,80
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Feasel, Kevin
Editore: Apress, 2022
ISBN 10: 1484288696 ISBN 13: 9781484288696
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781484288696_new

Contatta il venditore

Compra nuovo

EUR 62,12
Convertire valuta
Spese di spedizione: EUR 10,67
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Feasel, Kevin
Editore: Apress, 2022
ISBN 10: 1484288696 ISBN 13: 9781484288696
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 373 pages. 10.00x7.01x0.83 inches. In Stock. Codice articolo x-1484288696

Contatta il venditore

Compra nuovo

EUR 61,98
Convertire valuta
Spese di spedizione: EUR 11,87
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Kevin Feasel
Editore: Apress Nov 2022, 2022
ISBN 10: 1484288696 ISBN 13: 9781484288696
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Discover key information buried in the noise of data by learning a variety of anomaly detection techniques and using the Python programming language to build a robust service for anomaly detection against a variety of data types. The book starts with an overview of what anomalies and outliers are and uses the Gestalt school of psychology to explain just why it is that humans are naturally great at detecting anomalies. From there, you will move into technical definitions of anomalies, moving beyond 'I know it when I see it' to defining things in a way that computers can understand.The core of the book involves building a robust, deployable anomaly detection service in Python. You will start with a simple anomaly detection service, which will expand over the course of the book to include a variety of valuable anomaly detection techniques, covering descriptive statistics, clustering, and time series scenarios. Finally, you will compare your anomaly detectionservice head-to-head with a publicly available cloud offering and see how they perform.The anomaly detection techniques and examples in this book combine psychology, statistics, mathematics, and Python programming in a way that is easily accessible to software developers. They give you an understanding of what anomalies are and why you are naturally a gifted anomaly detector. Then, they help you to translate your human techniques into algorithms that can be used to program computers to automate the process. You'll develop your own anomaly detection service, extend it using a variety of techniques such as including clustering techniques for multivariate analysis and time series techniques for observing data over time, and compare your service head-on against a commercial service.What You Will LearnUnderstand the intuition behind anomaliesConvert your intuition into technical descriptions of anomalous dataDetect anomalies using statistical tools, such as distributions, variance and standard deviation, robust statistics, and interquartile rangeApply state-of-the-art anomaly detection techniques in the realms of clustering and time series analysisWork with common Python packages for outlier detection and time series analysis, such as scikit-learn, PyOD, and tslearnDevelop a project from the ground up which finds anomalies in data, starting with simple arrays of numeric data and expanding to include multivariate inputs and even time series dataWho This Book Is ForFor software developers with at least some familiarity with the Python programming language, and who would like to understand the science and some of the statistics behind anomaly detection techniques. Readers are not required to have any formal knowledge of statistics as the book introduces relevant concepts along the way. 376 pp. Englisch. Codice articolo 9781484288696

Contatta il venditore

Compra nuovo

EUR 64,19
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 7 copie di questo libro

Vedi tutti i risultati per questo libro