Finding Data Anomalies You Didn't Know to Look For
Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what "suspects" you're looking for. This O'Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work.
From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Ted Dunning is Chief Applications Architect at MapR Technologies and committer and PMC member of the Apache Mahout, Apache ZooKeeper, and Apache Drill projects and mentor for these Apache projects: Spark, Storm, Stratosphere, and Datafu. He contributed to Mahout clustering, classification, and matrix decomposition algorithms and helped expand the new version of Mahout Math library. Ted was the chief architect behind the MusicMatch (now Yahoo Music) and Veoh recommendation systems, built fraud-detection systems for ID Analytics (LifeLock), and has issued 24 patents to date. Ted has a PhD in computing science from University of Sheffield. When he’s not doing data science, he plays guitar and mandolin. Ted is on Twitter at @ted_dunning.
Ellen Friedman is a consultant and commentator, currently writing mainly about big data topics. She is a committer for the Apache Mahout project and a contributor to the Apache Drill project. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics including molecular biology, nontraditional inheritance, and oceanography. Ellen is also co-author of a book of magic-themed cartoons, A Rabbit Under the Hat. Ellen is on Twitter at @Ellen_Friedman.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,53 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 1,96 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781491911600
Quantità: 3 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781491911600
Quantità: 3 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 144. Codice articolo B9781491911600
Quantità: 3 disponibili
Da: moluna, Greven, Germania
Condizione: New. This O Reilly report uses practical example to explain how the underlying concepts of anomaly detection work.Finding Data Anomalies You Didn t Know to Look FornAnomaly detection is the detective work of machine learning: finding the unusual, catching th. Codice articolo 4213555
Quantità: 3 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 21668340
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 21668340-n
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 66. Codice articolo 126392418
Quantità: 3 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781491911600_new
Quantità: 3 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Practical Machine Learning: A New Look at Anomaly Detection 0.22. Book. Codice articolo BBS-9781491911600
Quantità: 5 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Codice articolo C9781491911600
Quantità: Più di 20 disponibili