Articoli correlati a Practical Machine Learning – Innovations in...

Practical Machine Learning – Innovations in Recommendation - Brossura

 
9781491915387: Practical Machine Learning – Innovations in Recommendation

Sinossi

Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settings--and demonstrates how even a small-scale development team can design an effective large-scale recommendation system.

Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. You'll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time.

  • Understand the tradeoffs between simple and complex recommenders
  • Collect user data that tracks user actions--rather than their ratings
  • Predict what a user wants based on behavior by others, using Mahout for co-occurrence analysis
  • Use search technology to offer recommendations in real time, complete with item metadata
  • Watch the recommender in action with a music service example
  • Improve your recommender with dithering, multimodal recommendation, and other techniques

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Ted Dunning is Chief Applications Architect at MapR Technologies and committer and PMC member of the Apache Mahout, ZooKeeper, and Drill projects and mentor for the Apache Storm, DataFu, Flink, and Optiq projects. He contributed to Mahout clustering, classification, and matrix decomposition algorithms and helped expand the new version of Mahout Math library. Ted was the chief architect behind the MusicMatch (now Yahoo Music) and Veoh recommendation systems, built fraud-detection systems for ID Analytics (LifeLock), and is the inventor of over 24 issued patents to date. Ted has a PhD in computing science from University of Sheffield. When he’s not doing data science, he plays guitar and mandolin. Ted is on Twitter at @ted_dunning.

Ellen Friedman is a consultant and commentator, currently writing mainly about big data topics. She is a committer for the Apache Mahout project and a contributor to the Apache Drill project. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics including molecular biology, nontraditional inheritance, and oceanography. Ellen is also co-author of a book of magic-themed cartoons, A Rabbit Under the Hat. Ellen is on Twitter at @Ellen_Friedman.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,01 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 1,91 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781491950388: Dunning: Practical Machine Learning: Innovations

Edizione in evidenza

ISBN 10:  1491950382 ISBN 13:  9781491950388
Brossura

Risultati della ricerca per Practical Machine Learning – Innovations in...

Foto dell'editore

Ted Dunning
Editore: O'Reilly Media, 2014
ISBN 10: 1491915382 ISBN 13: 9781491915387
Nuovo PAP

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781491915387

Contatta il venditore

Compra nuovo

EUR 19,02
Convertire valuta
Spese di spedizione: EUR 1,91
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dunning, Ted; Friedman, Ellen
Editore: O'Reilly Media, 2014
ISBN 10: 1491915382 ISBN 13: 9781491915387
Nuovo Paperback

Da: Rarewaves USA, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settings--and demonstrates how even a small-scale development team can design an effective large-scale recommendation system.Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. You'll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time.Understand the tradeoffs between simple and complex recommendersCollect user data that tracks user actions--rather than their ratingsPredict what a user wants based on behavior by others, using Mahoutfor co-occurrence analysisUse search technology to offer recommendations in real time, complete with item metadataWatch the recommender in action with a music service exampleImprove your recommender with dithering, multimodal recommendation, and other techniques. Codice articolo LU-9781491915387

Contatta il venditore

Compra nuovo

EUR 18,10
Convertire valuta
Spese di spedizione: EUR 3,40
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Ted Dunning
Editore: O'Reilly Media, 2014
ISBN 10: 1491915382 ISBN 13: 9781491915387
Nuovo PAP

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781491915387

Contatta il venditore

Compra nuovo

EUR 17,63
Convertire valuta
Spese di spedizione: EUR 5,79
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dunning, Ted; Friedman, Ellen
Editore: O'Reilly Media, 2014
ISBN 10: 1491915382 ISBN 13: 9781491915387
Nuovo Paperback

Da: Rarewaves USA United, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settings--and demonstrates how even a small-scale development team can design an effective large-scale recommendation system.Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. You'll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time.Understand the tradeoffs between simple and complex recommendersCollect user data that tracks user actions--rather than their ratingsPredict what a user wants based on behavior by others, using Mahoutfor co-occurrence analysisUse search technology to offer recommendations in real time, complete with item metadataWatch the recommender in action with a music service exampleImprove your recommender with dithering, multimodal recommendation, and other techniques. Codice articolo LU-9781491915387

Contatta il venditore

Compra nuovo

EUR 20,17
Convertire valuta
Spese di spedizione: EUR 3,40
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Ted Dunning, Ellen Friedman
Editore: O'Reilly Media, US, 2014
ISBN 10: 1491915382 ISBN 13: 9781491915387
Nuovo Paperback

Da: Rarewaves.com UK, London, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settings--and demonstrates how even a small-scale development team can design an effective large-scale recommendation system.Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. You'll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time.Understand the tradeoffs between simple and complex recommendersCollect user data that tracks user actions--rather than their ratingsPredict what a user wants based on behavior by others, using Mahoutfor co-occurrence analysisUse search technology to offer recommendations in real time, complete with item metadataWatch the recommender in action with a music service exampleImprove your recommender with dithering, multimodal recommendation, and other techniques. Codice articolo LU-9781491915387

Contatta il venditore

Compra nuovo

EUR 21,49
Convertire valuta
Spese di spedizione: EUR 2,30
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Ted Dunning
Editore: O'Reilly Media, Inc, USA, 2014
ISBN 10: 1491915382 ISBN 13: 9781491915387
Nuovo Paperback / softback

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 121. Codice articolo B9781491915387

Contatta il venditore

Compra nuovo

EUR 17,62
Convertire valuta
Spese di spedizione: EUR 6,27
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dunning, Ted; Friedman, Ellen
Editore: O'Reilly Media, 2014
ISBN 10: 1491915382 ISBN 13: 9781491915387
Nuovo Paperback

Da: Rarewaves.com USA, London, LONDO, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settings--and demonstrates how even a small-scale development team can design an effective large-scale recommendation system.Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. You'll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time.Understand the tradeoffs between simple and complex recommendersCollect user data that tracks user actions--rather than their ratingsPredict what a user wants based on behavior by others, using Mahoutfor co-occurrence analysisUse search technology to offer recommendations in real time, complete with item metadataWatch the recommender in action with a music service exampleImprove your recommender with dithering, multimodal recommendation, and other techniques. Codice articolo LU-9781491915387

Contatta il venditore

Compra nuovo

EUR 24,18
Convertire valuta
Spese di spedizione: EUR 2,30
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Dunning, Ted; Friedman, Ellen
Editore: O'Reilly Media, 2014
ISBN 10: 1491915382 ISBN 13: 9781491915387
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781491915387

Contatta il venditore

Compra nuovo

EUR 19,28
Convertire valuta
Spese di spedizione: EUR 7,66
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dunning, Ted
Editore: O'Reilly Media 10/6/2014, 2014
ISBN 10: 1491915382 ISBN 13: 9781491915387
Nuovo Paperback or Softback

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback or Softback. Condizione: New. Practical Machine Learning: Innovations in Recommendation 0.19. Book. Codice articolo BBS-9781491915387

Contatta il venditore

Compra nuovo

EUR 16,44
Convertire valuta
Spese di spedizione: EUR 11,48
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Ted Dunning
Editore: O?Reilly Media, 2016
ISBN 10: 1491915382 ISBN 13: 9781491915387
Nuovo Brossura

Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 2016. Paperback. . . . . . Codice articolo V9781491915387

Contatta il venditore

Compra nuovo

EUR 27,45
Convertire valuta
Spese di spedizione: EUR 2,00
Da: Irlanda a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 12 copie di questo libro

Vedi tutti i risultati per questo libro