Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications.
Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You'll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Jeremy Howard is an entrepreneur, business strategist, developer, and educator. Jeremy is a founding researcher at fast.ai, a research institute dedicated to making deep learning more accessible. He is also a Distinguished Research Scientist at the University of San Francisco, a faculty member at Singularity University, and a Young Global Leader with the World Economic Forum.
Jeremy’s most recent startup, Enlitic, was the first company to apply deep learning to medicine, and has been selected one of the world’s top 50 smartest companies by MIT Tech Review two years running. He was previously the President and Chief Scientist of the data science platform Kaggle, where he was the top ranked participant in international machine learning competitions 2 years running. He was the founding CEO of two successful Australian startups (FastMail, and Optimal Decisions Group–purchased by Lexis-Nexis). Before that, he spent 8 years in management consulting, at McKinsey & Co, and AT Kearney. Jeremy has invested in, mentored, and advised many startups, and contributed to many open source projects.
He has many television and other video appearances, including as a regular guest on Australia’s highest-rated breakfast news program, a popular talk on TED.com, and data science and web development tutorials and discussions.
Sylvain is a former teacher and a Research Scientist at fast.ai, with a focus on making deep learning more accessible by designing and improving techniques that allow models to train fast on limited resources.
Prior to this, Sylvain wrote several books covering the entire curriculum he was teaching in France (published at Éditions Dunod) until 2015 in CPGE. CPGE are a French specific two-year program whereby handpicked students who graduated high school follow an intense preparation before sitting for the competitive exam to enter the top engineering and business schools of the country. Sylvain taught computer science and mathematics in that program for seven years.
Sylvain is an alumni from École Normale Supérieure (Paris, France) where he studied mathematics and has a Master’s Degree in mathematics from University Paris XI (Orsay, France).
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 3,40 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: SecondSale, Montgomery, IL, U.S.A.
Condizione: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00077530329
Quantità: 2 disponibili
Da: SecondSale, Montgomery, IL, U.S.A.
Condizione: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00092031117
Quantità: 1 disponibili
Da: Greenworld Books, Arlington, TX, U.S.A.
Condizione: good. Fast Free Shipping â" Good condition book with a firm cover and clean, readable pages. Shows normal use, including some light wear or limited notes highlighting, yet remains a dependable copy overall. Supplemental items like CDs or access codes may not be included. Codice articolo GWV.1492045527.G
Quantità: 1 disponibili
Da: HPB-Red, Dallas, TX, U.S.A.
Paperback. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_440740055
Quantità: 1 disponibili
Da: Seattle Goodwill, Seattle, WA, U.S.A.
paperback. Condizione: Good. Codice articolo mon0000022884
Quantità: 1 disponibili
Da: ThriftBooks-Dallas, Dallas, TX, U.S.A.
Paperback. Condizione: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 2.24. Codice articolo G1492045527I3N00
Quantità: 1 disponibili
Da: Goodwill of Silicon Valley, SAN JOSE, CA, U.S.A.
Condizione: good. Supports Goodwill of Silicon Valley job training programs. The cover and pages are in Good condition! Any other included accessories are also in Good condition showing use. Use can include some highlighting and writing, page and cover creases as well as other types visible wear. Codice articolo GWSVV.1492045527.G
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. Codice articolo 35911235-5
Quantità: 1 disponibili
Da: thebookforest.com, San Rafael, CA, U.S.A.
Condizione: New. Supporting Bay Area Friends of the Library since 2010. Well packaged and promptly shipped. Codice articolo 1LAUHV00300D
Quantità: 1 disponibili
Da: WorldofBooks, Goring-By-Sea, WS, Regno Unito
Paperback. Condizione: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Codice articolo GOR010783598
Quantità: 1 disponibili