As a generalization of simple correspondence analysis, multiple correspondence analysis (MCA) is a powerful technique for handling larger, more complex datasets, including the high-dimensional categorical data often encountered in the social sciences, marketing, health economics, and biomedical research. Until now, however, the literature on the subject has been scattered, leaving many in these fields no comprehensive resource from which to learn its theory, applications, and implementation. Multiple Correspondence Analysis and Related Methods gives a state-of-the-art description of this new field in an accessible, self-contained, textbook format. Explaining the methodology step-by-step, it offers an exhaustive survey of the different approaches taken by researchers from different statistical "schools" and explores a wide variety of application areas. Each chapter includes empirical examples that provide a practical understanding of the method and its interpretation, and most chapters end with a "Software Note" that discusses software and computational aspects. An appendix at the end of the book gives further computing details along with code written in the R language for performing MCA and related techniques. The code and the datasets used in the book are available for download from a supporting Web page. Providing a unique, multidisciplinary perspective, experts in MCA from both statistics and the social sciences contributed chapters to the book. The editors unified the notation and coordinated and cross-referenced the theory across all of the chapters, making the book read seamlessly. Practical, accessible, and thorough, Multiple Correspondence Analysis and Related Methods brings the theory and applications of MCA under one cover and provides a valuable addition to your statistical toolbox.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Michael Greenacre, Jorg Blasius
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: BennettBooksLtd, Los Angeles, CA, U.S.A.
Hardcover. Condizione: New. In shrink wrap. Looks like an interesting title! Codice articolo Q-1584886285
Quantità: 1 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Hardcover. Condizione: New. Codice articolo 6666-TNFPD-9781584886280
Quantità: 5 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 4047584-n
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 608 Index. Codice articolo 26526933
Quantità: 4 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 4047584-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 4047584
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 608 Illus. This item is printed on demand. Codice articolo 8369546
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 608. Codice articolo 18526943
Quantità: 4 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 4047584
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Michael Greenacre, Jorg BlasiusAs a generalization of simple correspondence analysis, multiple correspondence analysis (MCA) is a powerful technique for handling larger, more complex datasets, including the high-dimensional categorical data often enc. Codice articolo 596345086
Quantità: Più di 20 disponibili