Articoli correlati a Where Good Ideas Come From: The Natural History of...

Where Good Ideas Come From: The Natural History of Innovation - Brossura

 
9781594485381: Where Good Ideas Come From: The Natural History of Innovation
Vedi tutte le copie di questo ISBN:
 
 
A fascinating deep dive on innovation from the New York Times bestselling author of How We Got To Now and Farsighted

The printing press, the pencil, the flush toilet, the battery--these are all great ideas. But where do they come from? What kind of environment breeds them? What sparks the flash of brilliance? How do we generate the breakthrough technologies that push forward our lives, our society, our culture? Steven Johnson's answers are revelatory as he identifies the seven key patterns behind genuine innovation, and traces them across time and disciplines. From Darwin and Freud to the halls of Google and Apple, Johnson investigates the innovation hubs throughout modern time and pulls out the approaches and commonalities that seem to appear at moments of originality.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

L'autore:
Steven Johnson is the bestselling author of Future Perfect, Where Good Ideas Come From, The Invention of Air, The Ghost Map, and Everything Bad is Good for You, and is the editor of The Innovator's Cookbook. He is the founder of a variety of influential websites and writes for Time, WiredThe New York Times, and The Wall Street Journal. He lives in Marin County, California, with his wife and three sons.

Steven Johnson is the bestselling author of Future Perfect, Where Good Ideas Come From, The Invention of Air, The Ghost Map, and Everything Bad is Good for You, and is the editor of The Innovator's Cookbook. He is the founder of a variety of influential websites and writes for Time, WiredThe New York Times, and The Wall Street Journal. He lives in Marin County, California, with his wife and three sons.
Estratto. © Riproduzione autorizzata. Diritti riservati.:

Introduction


REEF, CITY, WEB
 

. . . as imagination bodies forth
The forms of things unknown, the poet’s pen
Turns them to shapes and gives to airy nothing
A local habitation and a name.

SHAKESPEARE, A Midsummer Night’s Dream, V.i.14-17



Darwin’s Paradox

April 4, 1836. Over the eastern expanse of the Indian Ocean, the reliable northeast winds of monsoon season have begun to give way to the serene days of summer. On the Keeling Islands, two small atolls composed of twenty-seven coral islands six hundred miles west of Sumatra, the emerald waters are invitingly placid and warm, their hue enhanced by the brilliant white sand of disintegrated coral. On one stretch of shore usually guarded by stronger surf, the water is so calm that Charles Darwin wades out, under the vast blue sky of the tropics, to the edge of the live coral reef that rings the island.

For hours he stands and paddles among the crowded pageantry of the reef. Twenty-seven years old, seven thousand miles from London, Darwin is on the precipice, standing on an underwater peak ascending over an unfathomable sea. He is on the edge of an idea about the forces that built that peak, an idea that will prove to be the first great scientific insight of his career. And he has just begun exploring another hunch, still hazy and unformed, that will eventually lead to the intellectual summit of the nineteenth century.

Around him, the crowds of the coral ecosystem dart and shimmer. The sheer variety dazzles: butterflyfish, damselfish, parrotfish, Napoleon fish, angelfish; golden anthias feeding on plankton above the cauliflower blooms of the coral; the spikes and tentacles of sea urchins and anemones. The tableau delights Darwin’s eye, but already his mind is reaching behind the surface display to a more profound mystery. In his account of the Beagle’s voyage, published four years later, Darwin would write: “It is excusable to grow enthusiastic over the infinite numbers of organic beings with which the sea of the tropics, so prodigal of life, teems; yet I must confess I think those naturalists who have described, in well-known words, the submarine grottoes decked with a thousand beauties, have indulged in rather exuberant language.”

What lingers in the back of Darwin’s mind, in the days and weeks to come, is not the beauty of the submarine grotto but rather the “infinite numbers” of organic beings. On land, the flora and fauna of the Keeling Islands are paltry at best. Among the plants, there is little but “cocoa-nut” trees, lichen, and weeds. “The list of land animals,” he writes, “is even poorer than that of the plants”: a handful of lizards, almost no true land birds, and those recent immigrants from European ships, rats. “The island has no domestic quadruped excepting the pig,” Darwin notes with disdain.

Yet just a few feet away from this desolate habitat, in the coral reef waters, an epic diversity, rivaled only by that of the rain forests, thrives. This is a true mystery. Why should the waters at the edge of an atoll support so many different livelihoods? Extract ten thousand cubic feet of water from just about anywhere in the Indian Ocean and do a full inventory on the life you find there: the list would be about as “poor” as Darwin’s account of the land animals of the Keelings. You might find a dozen fish if you were lucky. On the reef, you would be guaranteed a thousand. In Darwin’s own words, stumbling across the ecosystem of a coral reef in the middle of an ocean was like encountering a swarming oasis in the middle of a desert. We now call this phenomenon Darwin’s Paradox: so many different life forms, occupying such a vast array of ecological niches, inhabiting waters that are otherwise remarkably nutrient-poor. Coral reefs make up about one-tenth of one percent of the earth’s surface, and yet roughly a quarter of the known species of marine life make their homes there. Darwin doesn’t have those statistics available to him, standing in the lagoon in 1836, but he has seen enough of the world over the preceding four years on the Beagle to know there is something peculiar in the crowded waters of the reef.

The next day, Darwin ventures to the windward side of the atoll with the Beagle’s captain, Vice Admiral James FitzRoy, and there they watch massive waves crash against the coral’s white barrier. An ordinary European spectator, accustomed to the calmer waters of the English Channel or the Mediterranean, would be naturally drawn to the impressive crest of the surf. (The breakers, Darwin observes, are almost “equal in force [to] those during a gale of wind in the temperate regions, and never cease to rage.”) But Darwin has his eye on something else—not the violent surge of water but the force that resists it: the tiny organisms that have built the reef itself.

 

The ocean throwing its waters over the broad reef appears an invincible, all-powerful enemy; yet we see it resisted, and even conquered, by means which at first seem most weak and inefficient. It is not that the ocean spares the rock of coral; the great fragments scattered over the reef, and heaped on the beach, whence the tall cocoa-nut springs, plainly bespeak the unrelenting power of the waves . . . Yet these low, insignificant coral-islets stand and are victorious: for here another power, as an antagonist, takes part in the contest. The organic forces separate the atoms of carbonate of lime, one by one, from the foaming breakers, and unite them into a symmetrical structure. Let the hurricane tear up its thousand huge fragments; yet what will that tell against the accumulated labour of myriads of architects at work night and day, month after month?

 

Darwin is drawn to those minuscule architects because he believes they are the key to solving the mystery that has brought the Beagle to the Keeling Islands. In the Admiralty’s memorandum authorizing the ship’s five-year journey, one of the principal scientific directives is the investigation of atoll formation. Darwin’s mentor, the brilliant geologist Charles Lyell, had recently proposed that atolls are created by undersea volcanoes that have been driven upward by powerful movements in the earth’s crust. In Lyell’s theory, the distinctive circular shape of an atoll emerges as coral colonies construct reefs along the circumference of the volcanic crater. Darwin’s mind had been profoundly shaped by Lyell’s understanding of the deep time of geological transformation, but standing on the beach, watching the breakers crash against the coral, he knows that his mentor is wrong about the origin of the atolls. It is not a story of simple geology, he realizes. It is a story about the innovative persistence of life. And as he mulls the thought, there is a hint of something else in his mind, a larger, more encompassing theory that might account for the vast scope of life’s innovations. The forms of things unknown are turning, slowly, into shapes.

Days later, back on the Beagle, Darwin pulls out his journal and reflects on that mesmerizing clash between surf and coral. Presaging a line he would publish thirty years later in the most famous passage from On the Origin of Species, Darwin writes, “I can hardly explain the reason, but there is to my mind much grandeur in the view of the outer shores of these lagoon-islands.” In time, the reason would come to him.


The Superlinear City

From an early age, the Swiss scientist Max Kleiber had a knack for testing the edges of convention. As an undergraduate in Zurich in the 1910s, he roamed the streets dressed in sandals and an open collar, shocking attire for the day. During his tenure in the Swiss army, he discovered that his superiors had been trading information with the Germans, despite the official Swiss position of neutrality in World War I. Appalled, he simply failed to appear at his next call-up, and was ultimately jailed for several months. By the time he had settled on a career in agricultural science, he had had enough of the restrictions of Zurich society. And so Max Kleiber charted a path that would be followed by countless sandal-wearing, nonconformist war protesters in the decades to come. He moved to California.

Kleiber set up shop at the agricultural college run by the University of California at Davis, in the heart of the fertile Central Valley. His research initially focused on cattle, measuring the impact body size had on their metabolic rates, the speed with which an organism burns through energy. Estimating metabolic rates had great practical value for the cattle industry, because it enabled farmers to predict with reasonable accuracy both how much food their livestock would require, and how much meat they would ultimately produce after slaughter. Shortly after his arrival at Davis, Kleiber stumbled across a mysterious pattern in his research, a mathematical oddity that soon brought a much more diverse array of creatures to be measured in his lab: rats, ring doves, pigeons, dogs, even humans.

Scientists and animal lovers had long observed that as life gets bigger, it slows down. Flies live for hours or days; elephants live for half-centuries. The hearts of birds and small mammals pump blood much faster than those of giraffes and blue whales. But the relationship between size and speed didn’t seem to be a linear one. A horse might be five hundred times heavier than a rabbit, yet its pulse certainly wasn’t five hundred times slower than the rabbit’s. After a formidable series of measurements in his Davis lab, Kleiber discovered that this scaling phenomenon stuck to an unvarying mathematical script called “negative quarter-power scaling.” If you plotted mass versus metabolism on a logarithmic grid, the result was a perfectly straight line that led from rats and pigeons all the way up to bulls and hippopotami.

Physicists were used to discovering beautiful equations like this lurking in the phenomena they studied, but mathematical elegance was a rarity in the comparatively messy world of biology. But the more species Kleiber and his peers analyzed, the clearer the equation became: metabolism scales to mass to the negative quarter power. The math is simple enough: you take the square root of 1,000, which is (approximately) 31, and then take the square root of 31, which is (again, approximately) 5.5. This means that a cow, which is roughly a thousand times heavier than a woodchuck, will, on average, live 5.5 times longer, and have a heart rate that is 5.5 times slower than the woodchuck’s. As the science writer George Johnson once observed, one lovely consequence of Kleiber’s law is that the number of heartbeats per lifetime tends to be stable from species to species. Bigger animals just take longer to use up their quota.

Over the ensuing decades, Kleiber’s law was extended down to the microscopic scale of bacteria and cell metabolism; even plants were found to obey negative quarter-power scaling in their patterns of growth. Wherever life appeared, whenever an organism had to figure out a way to consume and distribute energy through a body, negative quarter-power scaling governed the patterns of its development.

Several years ago, the theoretical physicist Geoffrey West decided to investigate whether Kleiber’s law applied to one of life’s largest creations: the superorganisms of human-built cities. Did the “metabolism” of urban life slow down as cities grew in size? Was there an underlying pattern to the growth and pace of life of metropolitan systems? Working out of the legendary Santa Fe Institute, where he served as president until 2009, West assembled an international team of researchers and advisers to collect data on dozens of cities around the world, measuring everything from crime to household electrical consumption, from new patents to gasoline sales.

When they finally crunched the numbers, West and his team were delighted to discover that Kleiber’s negative quarter-power scaling governed the energy and transportation growth of city living. The number of gasoline stations, gasoline sales, road surface area, the length of electrical cables: all these factors follow the exact same power law that governs the speed with which energy is expended in biological organisms. If an elephant was just a scaled-up mouse, then, from an energy perspective, a city was just a scaled-up elephant.

But the most fascinating discovery in West’s research came from the data that didn’t turn out to obey Kleiber’s law. West and his team discovered another power law lurking in their immense database of urban statistics. Every datapoint that involved creativity and innovation—patents, R&D budgets, “supercreative” professions, inventors—also followed a quarter-power law, in a way that was every bit as predictable as Kleiber’s law. But there was one fundamental difference: the quarter-power law governing innovation was positive, not negative. A city that was ten times larger than its neighbor wasn’t ten times more innovative; it was seventeen times more innovative. A metropolis fifty times bigger than a town was 130 times more innovative.

Kleiber’s law proved that as life gets bigger, it slows down. But West’s model demonstrated one crucial way in which human-built cities broke from the patterns of biological life: as cities get bigger, they generate ideas at a faster clip. This is what we call “superlinear scaling”: if creativity scaled with size in a straight, linear fashion, you would of course find more patents and inventions in a larger city, but the number of patents and inventions per capita would be stable. West’s power laws suggested something far more provocative: that despite all the noise and crowding and distraction, the average resident of a metropolis with a population of five million people was almost three times more creative than the average resident of a town of a hundred thousand. “Great cities are not like towns only larger,” Jane Jacobs wrote nearly fifty years ago. West’s positive quarter-power law gave that insight a mathematical foundation. Something about the environment of a big city was making its residents significantly more innovative than residents of smaller towns. But what was it?


The 10/10 Rule

The first national broadcast of a color television program took place on January 1, 1954, when NBC aired an hour-long telecast of the Tournament of Roses parade, and distributed it to twenty-two cities across the country. For those lucky enough to see the program, the effect of a moving color image on a small screen seems to have been mesmerizing. The New York Times, in typical language, called it a “veritable bevy of hues and depth.” “To concentrate so much color information within the frame of a small screen,” the Times wrote, “would be difficult for even the most gifted artist doing a ‘still’ painting. To do it with constantly moving pictures seemed pure wizardry.” Alas, the Rose Parade “broadcast” turned out to be not all that broad, given that it was visible only on prototype televisions in RCA showrooms. Color programming would not become standard on prime-time shows until the late 1960s. After the advent of color, the basic conventions that defined the television imag...

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditorePenguin Publishing Group
  • Data di pubblicazione2011
  • ISBN 10 1594485380
  • ISBN 13 9781594485381
  • RilegaturaCopertina flessibile
  • Numero di pagine344
  • Valutazione libreria

Spese di spedizione: EUR 3,99
Da: Canada a: U.S.A.

Destinazione, tempi e costi

Aggiungere al carrello

Altre edizioni note dello stesso titolo

9780141033402: Where Good Ideas Come From: The Seven Patterns of Innovation

Edizione in evidenza

ISBN 10:  0141033401 ISBN 13:  9780141033402
Casa editrice: Penguin, 2011
Rilegatura sconosciuta

  • 9781594487712: Where Good Ideas Come From: The Natural History of Innovation

    Riverh..., 2010
    Rilegato

  • 9781846140518: Where Good Ideas Come From: The Natural History of Innovation

    Allen ..., 2010
    Rilegato

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

Johnson, Steven
Editore: Riverhead Books (2011)
ISBN 10: 1594485380 ISBN 13: 9781594485381
Nuovo Paperback Quantità: 4
Da:
BookOutlet
(Thorold, ON, Canada)
Valutazione libreria

Descrizione libro Paperback. Condizione: New. Paperback. Publisher overstock, may contain remainder mark on edge. Codice articolo 9781594485381B

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 7,83
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,99
Da: Canada a: U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Johnson, Steven
Editore: Riverhead Books (2011)
ISBN 10: 1594485380 ISBN 13: 9781594485381
Nuovo Paperback Quantità: 1
Da:
upickbook
(Daly City, CA, U.S.A.)
Valutazione libreria

Descrizione libro Paperback. Condizione: New. Codice articolo mon0000199841

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 8,70
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 4,22
In U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Johnson, Steven
Editore: Riverhead Books (2011)
ISBN 10: 1594485380 ISBN 13: 9781594485381
Nuovo Brossura Quantità: > 20
Da:
Lakeside Books
(Benton Harbor, MI, U.S.A.)
Valutazione libreria

Descrizione libro Condizione: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!. Codice articolo OTF-S-9781594485381

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 11,43
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,75
In U.S.A.
Destinazione, tempi e costi
Immagini fornite dal venditore

Johnson, Steven
ISBN 10: 1594485380 ISBN 13: 9781594485381
Nuovo Paperback or Softback Quantità: 4
Da:
BargainBookStores
(Grand Rapids, MI, U.S.A.)
Valutazione libreria

Descrizione libro Paperback or Softback. Condizione: New. Where Good Ideas Come from: The Natural History of Innovation 0.75. Book. Codice articolo BBS-9781594485381

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 16,18
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Johnson, Steven (Author)
Editore: Penguin Random House (2011)
ISBN 10: 1594485380 ISBN 13: 9781594485381
Nuovo Brossura Quantità: > 20
Da:
INDOO
(Avenel, NJ, U.S.A.)
Valutazione libreria

Descrizione libro Condizione: New. Brand New. Codice articolo 1594485380

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 12,78
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,75
In U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Johnson, Steven
Editore: Riverhead Books (2011)
ISBN 10: 1594485380 ISBN 13: 9781594485381
Nuovo Paperback Quantità: 1
Da:
West Coast Bookseller
(Moorpark, CA, U.S.A.)
Valutazione libreria

Descrizione libro Paperback. Condizione: New. Codice articolo P9-701L

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 12,57
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 4,03
In U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Johnson, Steven
Editore: Riverhead Books (2011)
ISBN 10: 1594485380 ISBN 13: 9781594485381
Nuovo Paperback Quantità: > 20
Da:
Save With Sam
(North Miami, FL, U.S.A.)
Valutazione libreria

Descrizione libro Paperback. Condizione: New. Brand New!. Codice articolo 1594485380

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 16,67
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi
Immagini fornite dal venditore

Johnson, Steven
Editore: Riverhead Books (2011)
ISBN 10: 1594485380 ISBN 13: 9781594485381
Nuovo Brossura Quantità: 5
Da:
GreatBookPrices
(Columbia, MD, U.S.A.)
Valutazione libreria

Descrizione libro Condizione: New. Codice articolo 13485116-n

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 14,69
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 2,48
In U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Johnson, Steven
Editore: Riverhead Books (2011)
ISBN 10: 1594485380 ISBN 13: 9781594485381
Nuovo Paperback Quantità: 1
Da:
Ergodebooks
(Houston, TX, U.S.A.)
Valutazione libreria

Descrizione libro Paperback. Condizione: New. Codice articolo BKZN9781594485381

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 17,83
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Johnson, Steven
Editore: Riverhead Books (2011)
ISBN 10: 1594485380 ISBN 13: 9781594485381
Nuovo Brossura Quantità: 20
Da:
Lucky's Textbooks
(Dallas, TX, U.S.A.)
Valutazione libreria

Descrizione libro Condizione: New. Codice articolo ABLING22Oct2018170198758

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 15,31
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,75
In U.S.A.
Destinazione, tempi e costi

Vedi altre copie di questo libro

Vedi tutti i risultati per questo libro