Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library.
Summary
Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Written by NASA JPL Deputy CTO and Principal Data Scientist Chris Mattmann, all examples are accompanied by downloadable Jupyter Notebooks for a hands-on experience coding TensorFlow with Python. New and revised content expands coverage of core machine learning algorithms, and advancements in neural networks such as VGG-Face facial identification classifiers and deep speech classifiers.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the technology
Supercharge your data analysis with machine learning! ML algorithms automatically improve as they process data, so results get better over time. You don&;t have to be a mathematician to use ML: Tools like Google&;s TensorFlow library help with complex calculations so you can focus on getting the answers you need.
About the book
Machine Learning with TensorFlow, Second Edition is a fully revised guide to building machine learning models using Python and TensorFlow. You&;ll apply core ML concepts to real-world challenges, such as sentiment analysis, text classification, and image recognition. Hands-on examples illustrate neural network techniques for deep speech processing, facial identification, and auto-encoding with CIFAR-10.
What's inside
    Machine Learning with TensorFlow
    Choosing the best ML approaches
    Visualizing algorithms with TensorBoard
    Sharing results with collaborators
    Running models in Docker
About the reader
Requires intermediate Python skills and knowledge of general algebraic concepts like vectors and matrices. Examples use the super-stable 1.15.x branch of TensorFlow and TensorFlow 2.x.
About the author
Chris Mattmann is the Division Manager of the Artificial Intelligence, Analytics, and Innovation Organization at NASA Jet Propulsion Lab. The first edition of this book was written by Nishant Shukla with Kenneth Fricklas.
Table of Contents
PART 1 - YOUR MACHINE-LEARNING RIG
1 A machine-learning odyssey
2 TensorFlow essentials
PART 2 - CORE LEARNING ALGORITHMS
3 Linear regression and beyond
4 Using regression for call-center volume prediction
5 A gentle introduction to classification
6 Sentiment classification: Large movie-review dataset
7 Automatically clustering data
8 Inferring user activity from Android accelerometer data
9 Hidden Markov models
10 Part-of-speech tagging and word-sense disambiguation
PART 3 - THE NEURAL NETWORK PARADIGM
11 A peek into autoencoders
12 Applying autoencoders: The CIFAR-10 image dataset
13 Reinforcement learning
14 Convolutional neural networks
15 Building a real-world CNN: VGG-Face ad VGG-Face Lite
16 Recurrent neural networks
17 LSTMs and automatic speech recognition
18 Sequence-to-sequence models for chatbots
19 Utility landscape
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Chris Mattmann is the Deputy Chief Technology and Innovation Officer at NASA Jet Propulsion Lab, where he has been recognised as JPL's first Principal Scientist in the area of Data Science. Chris has applied TensorFlow to challenges he&;s faced at NASA, including building an implementation of Google&;s Show & Tell algorithm for image captioning using TensorFlow. He contributes to open source as a former Director at the Apache Software Foundation, and teaches graduate courses at USC in Content Detection and Analysis, and in Search Engines and Information Retrieval.
 
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Goodwill Southern California, Los Angeles, CA, U.S.A.
Condizione: good. Codice articolo 4CJULU001D71
Quantità: 1 disponibili
Da: HPB-Red, Dallas, TX, U.S.A.
Paperback. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_408005501
Quantità: 1 disponibili
Da: clickgoodwillbooks, Indianapolis, IN, U.S.A.
Condizione: acceptable. Used - Acceptable: All pages and the cover are intact, but shrink wrap, dust covers, or boxed set case may be missing. Pages may include limited notes, highlighting, or minor water damage but the text is readable. Item may be missing bundled media. Codice articolo 3O6WBH0013YF_ns
Quantità: 1 disponibili
Da: INDOO, Avenel, NJ, U.S.A.
Condizione: As New. Unread copy in mint condition. Codice articolo SS9781617297717
Quantità: Più di 20 disponibili
Da: INDOO, Avenel, NJ, U.S.A.
Condizione: New. Brand New. Codice articolo 9781617297717
Quantità: Più di 20 disponibili
Da: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condizione: New. This fully revised second edition of Machine Learning with TensorFlow teaches you the foundational concepts of machine learning and how to utilize the TensorFlow library to rapidly build powerful ML models. You'll learn the basics of regression, classification, and clustering algorithms, applying them to solve real-world challenges. New and revised content expands coverage of core machine learning algorithms and advancements in neural networks such as VGG-Face facial identification classifiers and deep speech classifiers. Written by NASA JPL Deputy CTO and Principal Data Scientist Chris Mattmann, all examples are accompanied by downloadable Jupyter Notebooks for a hands-on experience coding TensorFlow with Python. Key Features · Visualizing algorithms with TensorBoard · Understanding and using neural networks · Reproducing and employing predictive science · Downloadable Jupyter Notebooks for all examples · Questions to test your knowledge · Examples use the super-stable 1.14.1 branch of TensorFlow Developers experienced with Python and algebraic concepts like vectors and matrices. About the technology TensorFlow, Google's library for large-scale machine learning, makes powerful ML techniques easily accessible. It simplifies often-complex computations by representing them as graphs that are mapped to machines in a cluster or to the processors of a single machine. Offering a complete ecosystem for all stages and types of machine learning, TensorFlow's end-to-end functionality empowers machine learning engineers of all skill levels to solve their problems with ML. Chris Mattmann is the Deputy Chief Technology and Innovation Officer at NASA Jet Propulsion Lab, where he has been recognised as JPL's first Principal Scientist in the area of Data Science. Chris has applied TensorFlow to challenges he's faced at NASA, including building an implementation of Google's Show and Tell algorithm for image captioning using TensorFlow. He contributes to open source as a former Director at the Apache Software Foundation, and teaches graduate courses at USC in Content Detection and Analysis, and in Search Engines and Information Retrieval. Nishant Shukla wrote the first edition of Machine Learning with TensorFlow. Codice articolo LU-9781617297717
Quantità: 10 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 350. Codice articolo 26383502376
Quantità: 2 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEOCT25-12522
Quantità: 1 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. This fully revised second edition of Machine Learning with TensorFlow teaches you the foundational concepts of machine learning and how to utilize the TensorFlow library to rapidly build powerful ML models. Youll learn the basics of regression, classification, and clustering algorithms, applying them to solve real-world challenges. New and revised content expands coverage of core machine learning algorithms and advancements in neural networks such as VGG-Face facial identification classifiers and deep speech classifiers. Written by NASA JPL Deputy CTO and Principal Data Scientist Chris Mattmann, all examples are accompanied by downloadable Jupyter Notebooks for a hands-on experience coding TensorFlow with Python. Key Features Visualizing algorithms with TensorBoard Understanding and using neural networks Reproducing and employing predictive science Downloadable Jupyter Notebooks for all examples Questions to test your knowledge Examples use the super-stable 1.14.1 branch of TensorFlow Developers experienced with Python and algebraic concepts like vectors and matrices. About the technology TensorFlow, Googles library for large-scale machine learning, makes powerful ML techniques easily accessible. It simplifies often-complex computations by representing them as graphs that are mapped to machines in a cluster or to the processors of a single machine. Offering a complete ecosystem for all stages and types of machine learning, TensorFlows end-to-end functionality empowers machine learning engineers of all skill levels to solve their problems with ML. Chris Mattmann is the Deputy Chief Technology and Innovation Officer at NASA Jet Propulsion Lab, where he has been recognised as JPL's first Principal Scientist in the area of Data Science. Chris has applied TensorFlow to challenges hes faced at NASA, including building an implementation of Googles Show & Tell algorithm for image captioning using TensorFlow. He contributes to open source as a former Director at the Apache Software Foundation, and teaches graduate courses at USC in Content Detection and Analysis, and in Search Engines and Information Retrieval. Nishant Shukla wrote the first edition of Machine Learning with TensorFlow. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781617297717
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 350. Codice articolo 380401655
Quantità: 2 disponibili