Discover one-of-a-kind AI strategies never before seen outside of academic papers! Learn how the principles of evolutionary computation overcome deep learning’s common pitfalls and deliver adaptable model upgrades without constant manual adjustment.
In Evolutionary Deep Learning you will learn how to:
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Micheal Lanham is a proven software and tech innovator with over 20 years of experience. He has developed a broad range of software applications in areas such as games, graphics, web, desktop, engineering, artificial intelligence, GIS, and machine learning applications for a variety of industries. At the turn of the millennium, Micheal began working with neural networks and evolutionary algorithms in game development.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: BooksRun, Philadelphia, PA, U.S.A.
Paperback. Condizione: Very Good. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Codice articolo 1617299529-8-1
Quantità: 1 disponibili
Da: Goodwill Books, Hillsboro, OR, U.S.A.
Condizione: acceptable. Fairly worn, but readable and intact. If applicable: Dust jacket, disc or access code may not be included. Codice articolo 3IIT4Q004IXM_ns
Quantità: 1 disponibili
Da: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
Paperback. Condizione: Very Good. No Jacket. Former library book; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less. Codice articolo G1617299529I4N10
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 44874285-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 44874285
Quantità: Più di 20 disponibili
Da: INDOO, Avenel, NJ, U.S.A.
Condizione: New. Codice articolo 9781617299520
Quantità: Più di 20 disponibili
Da: INDOO, Avenel, NJ, U.S.A.
Condizione: As New. Unread copy in mint condition. Codice articolo SS9781617299520
Quantità: Più di 20 disponibili
Da: Rarewaves.com USA, London, LONDO, Regno Unito
Paperback. Condizione: New. Discover one-of-a-kind AI strategies never before seen outside of academic papers! Learn how the principles of evolutionary computation overcome deep learning's common pitfalls and deliver adaptable model upgrades without constant manual adjustment. In Evolutionary Deep Learning you will learn how to: Solve complex design and analysis problems with evolutionary computationTune deep learning hyperparameters with evolutionary computation (EC), genetic algorithms, and particle swarm optimizationUse unsupervised learning with a deep learning autoencoder to regenerate sample dataUnderstand the basics of reinforcement learning and the Q Learning equationApply Q Learning to deep learning to produce deep reinforcement learningOptimize the loss function and network architecture of unsupervised autoencodersMake an evolutionary agent that can play an OpenAI Gym game Evolutionary Deep Learning is a guide to improving your deep learning models with AutoML enhancements based on the principles of biological evolution. This exciting new approach utilizes lesser-known AI approaches to boost performance without hours of data annotation or model hyperparameter tuning. about the technology Evolutionary deep learning merges the biology-simulating practices of evolutionary computation (EC) with the neural networks of deep learning. This unique approach can automate entire DL systems and help uncover new strategies and architectures. It gives new and aspiring AI engineers a set of optimization tools that can reliably improve output without demanding an endless churn of new data. about the reader For data scientists who know Python. Codice articolo LU-9781617299520
Quantità: 1 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo PB-9781617299520
Quantità: 15 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo PB-9781617299520
Quantità: 15 disponibili