Articoli correlati a Sequential Monte Carlo Methods for Nonlinear Discrete-Time...

Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering - Brossura

 
9781627051194: Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering

Sinossi

In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation. Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Product Description

Book by Bruno Marcelo GS

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreMorgan & Claypool Publishers
  • Data di pubblicazione2013
  • ISBN 10 1627051198
  • ISBN 13 9781627051194
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine100
  • Contatto del produttorenon disponibile

Compra usato

Condizioni: molto buono
Fast Shipping - Safe and Secure...
Visualizza questo articolo

EUR 65,97 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783031014079: Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering

Edizione in evidenza

ISBN 10:  3031014073 ISBN 13:  9783031014079
Casa editrice: Springer, 2013
Brossura

Risultati della ricerca per Sequential Monte Carlo Methods for Nonlinear Discrete-Time...

Foto dell'editore

Bruno, Marcelo G.S.
ISBN 10: 1627051198 ISBN 13: 9781627051194
Antico o usato paperback

Da: suffolkbooks, Center moriches, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: Very Good. Fast Shipping - Safe and Secure 7 days a week! Codice articolo 3TWOWA001N6T

Contatta il venditore

Compra usato

EUR 15,23
Convertire valuta
Spese di spedizione: EUR 65,97
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 8 disponibili

Aggiungi al carrello