Over the past decade, a massive proliferation of machine learning algorithms has emerged, from applications for surveillance to self-driving cars. The turning point occurred with the arrival of Convolutional Neural Network (CNN) models and the incredible accuracy brought by Deep Neural Networks (DNNs) at the cost of high computational complexity. In this growing environment, graphic processing units (GPUs) have become the de facto reference platform for the training and inference phases of CNNs and DNNs due to their high processing parallelism and memory bandwidth. However, GPUs are power-hungry architectures. To enable the deployment of CNN and DNN applications on energy-constrained devices (e.g., IoT devices), industry and academic research have moved towards hardware accelerators. Following the evolution of neural networks (from CNNs to DNNs), this survey sheds light on the impact of this architectural shift and discusses hardware accelerator trends in terms of design, exploration, simulation, and frameworks developed in both academia and industry.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 7,69 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26396171498
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 401254197
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18396171488
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 88 pages. 9.21x6.14x0.18 inches. In Stock. Codice articolo zk1638281629
Quantità: 1 disponibili