"By the end of this book, you will have the knowledge and abilities necessary to construct and implement a distributed data processing pipeline for machine learning model inference and training. Reduced time costs in machine learning result in shorter model training and model updating cycle wait times. Distributed machine learning enables ML professionals to reduce model training and inference time drastically. With the aid of this helpful manual, you'll be able to use your Python development experience and quickly get started with the creation of distributed ML, including multi-node ML systems"--
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
HRD. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L1-9781668498040
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
HRD. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L1-9781668498040
Quantità: Più di 20 disponibili
Da: preigu, Osnabrück, Germania
Buch. Condizione: Neu. Scalable and Distributed Machine Learning and Deep Learning Patterns | J. Joshua Thomas (u. a.) | Buch | Englisch | 2023 | IGI Global | EAN 9781668498040 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand. Codice articolo 127564542
Quantità: 5 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Scalable and Distributed Machine Learning and Deep Learning Patterns is a practical guide that provides insights into how distributed machine learning can speed up the training and serving of machine learning models, reduce time and costs, and address bottlenecks in the system during concurrent model training and inference. The book covers various topics related to distributed machine learning such as data parallelism, model parallelism, and hybrid parallelism. Readers will learn about cutting-edge parallel techniques for serving and training models such as parameter server and all-reduce, pipeline input, intra-layer model parallelism, and a hybrid of data and model parallelism. The book is suitable for machine learning professionals, researchers, and students who want to learn about distributed machine learning techniques and apply them to their work. This book is an essential resource for advancing knowledge and skills in artificial intelligence, deep learning, and high-performance computing. The book is suitable for computer, electronics, and electrical engineering courses focusing on artificial intelligence, parallel computing, high-performance computing, machine learning, and its applications. Whether you're a professional, researcher, or student working on machine and deep learning applications, this book provides a comprehensive guide for creating distributed machine learning, including multi-node machine learning systems, using Python development experience. By the end of the book, readers will have the knowledge and abilities necessary to construct and implement a distributed data processing pipeline for machine learning model inference and training, all while saving time and costs. Codice articolo 9781668498040
Quantità: 1 disponibili