Learn how to apply powerful data analysis techniques with popular open source Python modules
This book is for programmers, scientists, and engineers who have knowledge of the Python language and know the basics of data science. It is for those who wish to learn different data analysis methods using Python and its libraries. This book contains all the basic ingredients you need to become an expert data analyst.
Python is a multi-paradigm programming language well suited for both object-oriented application development as well as functional design patterns. Python has become the language of choice for data scientists for data analysis, visualization, and machine learning. It will give you velocity and promote high productivity.
This book will teach novices about data analysis with Python in the broadest sense possible, covering everything from data retrieval, cleaning, manipulation, visualization, and storage to complex analysis and modeling. It focuses on a plethora of open source Python modules such as NumPy, SciPy, matplotlib, pandas, IPython, Cython, scikit-learn, and NLTK. In later chapters, the book covers topics such as data visualization, signal processing, and time-series analysis, databases, predictive analytics and machine learning. This book will turn you into an ace data analyst in no time.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Ivan Idris
Ivan Idris has an MSc degree in Experimental Physics. His graduation thesis had a strong emphasis on Applied Computer Science. After graduating, he worked for several companies as Java developer, data warehouse developer, and QA analyst. His main professional interests are Business Intelligence, Big Data, and Cloud Computing. Ivan Idris enjoys writing clean, testable code and interesting technical articles. He is the author of NumPy Beginner's Guide - Second Edition, NumPy Cookbook, and Learning NumPy Array, all by Packt Publishing. You can find more information and a blog with a few NumPy examples at ivanidris.net.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 48,49 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 6,31 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781783553358
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781783553358
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Python Data Analysis 1.32. Book. Codice articolo BBS-9781783553358
Quantità: 5 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781783553358_new
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 22101603-n
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 22101603-n
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 642. Codice articolo C9781783553358
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Über den AutorrnrnIvan Idris has an MSc in experimental physics. His graduation thesis had a strong emphasis on applied computer science. After graduating, he worked for several companies as a Java developer, data warehouse developer, and Q. Codice articolo 448316977
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26359440698
Quantità: 4 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9781783553358
Quantità: 10 disponibili