Become an efficient data science practitioner by understanding Python's key concepts About This Book * Quickly get familiar with data science using Python 3.5 * Save time (and effort) with all the essential tools explained * Create effective data science projects and avoid common pitfalls with the help of examples and hints dictated by experience Who This Book Is For If you are an aspiring data scientist and you have at least a working knowledge of data analysis and Python, this book will get you started in data science. Data analysts with experience of R or MATLAB will also find the book to be a comprehensive reference to enhance their data manipulation and machine learning skills. What You Will Learn * Set up your data science toolbox using a Python scientific environment on Windows, Mac, and Linux * Get data ready for your data science project * Manipulate, fix, and explore data in order to solve data science problems * Set up an experimental pipeline to test your data science hypotheses * Choose the most effective and scalable learning algorithm for your data science tasks * Optimize your machine learning models to get the best performance * Explore and cluster graphs, taking advantage of interconnections and links in your data In Detail Fully expanded and upgraded, the second edition of Python Data Science Essentials takes you through all you need to know to suceed in data science using Python. Get modern insight into the core of Python data, including the latest versions of Jupyter notebooks, NumPy, pandas and scikit-learn. Look beyond the fundamentals with beautiful data visualizations with Seaborn and ggplot, web development with Bottle, and even the new frontiers of deep learning with Theano and TensorFlow. Dive into building your essential Python 3.5 data science toolbox, using a single-source approach that will allow to to work with Python 2.7 as well. Get to grips fast with data munging and preprocessing, and all the techniques you need to load, analyse, and process your data. Finally, get a complete overview of principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users. Style and approach The book is structured as a data science project. You will always benefit from clear code and simplified examples to help you understand the underlying mechanics and real-world datasets.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Luca Massaron is a data scientist and marketing research director specializing in multivariate statistical analysis, machine learning, and customer insight, with over a decade of experience in solving real-world problems and generating value for stakeholders by applying reasoning, statistics, data mining, and algorithms. From being a pioneer of Web audience analysis in Italy to achieving the rank of a top ten Kaggler, he has always been very passionate about every aspect of data and its analysis, and also about demonstrating the potential of data-driven knowledge discovery to both experts and non-experts. Favoring simplicity over unnecessary sophistication, he believes that a lot can be achieved in data science just by doing the essentials.
Alberto Boschetti is a data scientist with expertise in signal processing and statistics. He holds a PhD in telecommunication engineering and currently lives and works in London. In his work projects, he faces challenges ranging from natural language processing (NLP), behavioral analysis, machine learning to distributed processing. He is very passionate about his job and always tries to stay updated about the latest developments in data science technologies, attending meet-ups, conferences, and other events.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 3,52 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: ThriftBooks-Dallas, Dallas, TX, U.S.A.
Paperback. Condizione: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.43. Codice articolo G1786462133I4N00
Quantità: 1 disponibili
Da: ThriftBooks-Dallas, Dallas, TX, U.S.A.
Paperback. Condizione: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 1.43. Codice articolo G1786462133I3N00
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2912160173155
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 29164541-n
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Python Data Science Essentials - Second Edition: Learn the fundamentals of Data Science with Python 1.43. Book. Codice articolo BBS-9781786462138
Quantità: 5 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 29164541
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9781786462138
Quantità: 10 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781786462138_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 29164541-n
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Codice articolo C9781786462138
Quantità: Più di 20 disponibili