Utilize R to uncover hidden patterns in your Big Data
Key Features
Book Description
Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing.
The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.g. Amazon EC2 instances and Amazon RDS, Microsoft Azure and its HDInsight clusters) and also provide guidance on R connectivity with relational and non-relational databases such as MongoDB and HBase etc. It will further expand to include Big Data tools such as Apache Hadoop ecosystem, HDFS and MapReduce frameworks. Also other R compatible tools such as Apache Spark, its machine learning library Spark MLlib, as well as H2O.
What you will learn
Who this book is for
This book is intended for Data Analysts, Scientists, Data Engineers, Statisticians, Researchers, who want to integrate R with their current or future Big Data workflows.
It is assumed that readers have some experience in data analysis and understanding of data management and algorithmic processing of large quantities of data, however they may lack specific skills related to R.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
In Discussion regarding updating his book. Simon Walkowiak is a former data scientist at the UK Data Archive (University of Essex) and currently is the Managing Director of Mind Project Ltd and a Data Scientist Meetup organizer based in London.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 12,92 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 6,37 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
Paperback. Condizione: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 2. Codice articolo G1786466457I3N00
Quantità: 1 disponibili
Da: Better World Books, Mishawaka, IN, U.S.A.
Condizione: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Codice articolo 38167597-6
Quantità: 3 disponibili
Da: SecondSale, Montgomery, IL, U.S.A.
Condizione: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00082734834
Quantità: 1 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781786466457
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781786466457
Quantità: Più di 20 disponibili
Da: Toscana Books, AUSTIN, TX, U.S.A.
Paperback. Condizione: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Codice articolo Scanned1786466457
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781786466457_new
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Big Data Analytics with R 1.9. Book. Codice articolo BBS-9781786466457
Quantità: 5 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 27004401-n
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 27004401-n
Quantità: Più di 20 disponibili