Solve different problems in modelling deep neural networks using Python, Tensorflow, and Keras with this practical guide
Key Features:
Book Description:
Deep Learning is revolutionizing a wide range of industries. For many applications, deep learning has proven to outperform humans by making faster and more accurate predictions. This book provides a top-down and bottom-up approach to demonstrate deep learning solutions to real-world problems in different areas. These applications include Computer Vision, Natural Language Processing, Time Series, and Robotics.
The Python Deep Learning Cookbook presents technical solutions to the issues presented, along with a detailed explanation of the solutions. Furthermore, a discussion on corresponding pros and cons of implementing the proposed solution using one of the popular frameworks like TensorFlow, PyTorch, Keras and CNTK is provided. The book includes recipes that are related to the basic concepts of neural networks. All techniques s, as well as classical networks topologies. The main purpose of this book is to provide Python programmers a detailed list of recipes to apply deep learning to common and not-so-common scenarios.
What You Will Learn:
Who this book is for:
This book is intended for machine learning professionals who are looking to use deep learning algorithms to create real-world applications using Python. Thorough understanding of the machine learning concepts and Python libraries such as NumPy, SciPy and scikit-learn is expected. Additionally, basic knowledge in linear algebra and calculus is desired.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Indra den Bakker is an experienced deep learning engineer and mentor. He is the founder of 23insightspart of NVIDIA's Inception programa machine learning start-up building solutions that transform the worlds most important industries. For Udacity, he mentors students pursuing a Nanodegree in deep learning and related fields, and he is also responsible for reviewing student projects. Indra has a background in computational intelligence and worked for several years as a data scientist for IPG Mediabrands and Screen6 before founding 23insights.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: HPB-Red, Dallas, TX, U.S.A.
paperback. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_356206060
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2912160176837
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781787125193
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781787125193
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 390717443
Quantità: 4 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9781787125193
Quantità: 10 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Codice articolo C9781787125193
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Über den AutorrnrnIndra den Bakker is an experienced deep learning engineer and mentor. He is the founder of 23insightspart of NVIDIA s Inception programa machine learning start-up building solutions that transform the worlds most important. Codice articolo 448326320
Quantità: Più di 20 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Python Deep Learning Cookbook | Over 75 practical recipes on neural network modeling, reinforcement learning, and transfer learning using Python | Indra Den Bakker | Taschenbuch | Englisch | 2017 | Packt Publishing | EAN 9781787125193 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand. Codice articolo 110299111
Quantità: 5 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Seiten: 330 | Sprache: Englisch | Produktart: Bücher | Solve different problems in modelling deep neural networks using Python, Tensorflow, and Keras with this practical guide Key Features:Practical recipes on training different neural network models and tuning them for optimal performance Use Python frameworks like TensorFlow, Caffe, Keras, Theano for Natural Language Processing, Computer Vision, and more A hands-on guide covering the common as well as the not so common problems in deep learning using Python Book Description: Deep Learning is revolutionizing a wide range of industries. For many applications, deep learning has proven to outperform humans by making faster and more accurate predictions. This book provides a top-down and bottom-up approach to demonstrate deep learning solutions to real-world problems in different areas. These applications include Computer Vision, Natural Language Processing, Time Series, and Robotics. The Python Deep Learning Cookbook presents technical solutions to the issues presented, along with a detailed explanation of the solutions. Furthermore, a discussion on corresponding pros and cons of implementing the proposed solution using one of the popular frameworks like TensorFlow, PyTorch, Keras and CNTK is provided. The book includes recipes that are related to the basic concepts of neural networks. All techniques s, as well as classical networks topologies. The main purpose of this book is to provide Python programmers a detailed list of recipes to apply deep learning to common and not-so-common scenarios. What You Will Learn:Implement different neural network models in Python Select the best Python framework for deep learning such as PyTorch, Tensorflow, MXNet and Keras Apply tips and tricks related to neural networks internals, to boost learning performances Consolidate machine learning principles and apply them in the deep learning field Reuse and adapt Python code snippets to everyday problems Evaluate the cost/benefits and performance implication of each discussed solution Who this book is for: This book is intended for machine learning professionals who are looking to use deep learning algorithms to create real-world applications using Python. Thorough understanding of the machine learning concepts and Python libraries such as NumPy, SciPy and scikit-learn is expected. Additionally, basic knowledge in linear algebra and calculus is desired. Codice articolo 30322479/2
Quantità: 1 disponibili