Learn the art of regression analysis with Python
Key Features
Book Description
Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. There are many kinds of regression algorithms, and the aim of this book is to explain which is the right one to use for each set of problems and how to prepare real-world data for it. With this book you will learn to define a simple regression problem and evaluate its performance. The book will help you understand how to properly parse a dataset, clean it, and create an output matrix optimally built for regression. You will begin with a simple regression algorithm to solve some data science problems and then progress to more complex algorithms. The book will enable you to use regression models to predict outcomes and take critical business decisions. Through the book, you will gain knowledge to use Python for building fast better linear models and to apply the results in Python or in any computer language you prefer.
What You Will Learn
Who This Book Is For
The book targets Python developers, with a basic understanding of data science, statistics, and math, who want to learn how to do regression analysis on a dataset. It is beneficial if you have some knowledge of statistics and data science./p>""
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Luca Massaron is a data scientist and a marketing research director who is specialized in multivariate statistical analysis, machine learning, and customer insight with over a decade of experience in solving real-world problems and in generating value for stakeholders by applying reasoning, statistics, data mining, and algorithms. From being a pioneer of Web audience analysis in Italy to achieving the rank of a top ten Kaggler, he has always been very passionate about everything regarding data and its analysis and also about demonstrating the potential of data-driven knowledge discovery to both experts and non-experts. Favoring simplicity over unnecessary sophistication, he believes that a lot can be achieved in data science just by doing the essentials.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 16,98 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 7,65 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 30629591
Quantità: 4 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781788992367
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 30629591-n
Quantità: 4 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781788992367_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 30629591-n
Quantità: Più di 20 disponibili
Da: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9781788992367
Quantità: 1 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9781788992367
Quantità: 10 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9781788992367
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 30629591
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9781788992367
Quantità: 1 disponibili