Learn how to develop intelligent applications with sequential learning and apply modern methods for language modeling with neural network architectures for deep learning with Python's most popular TensorFlow framework.
Developers struggle to find an easy-to-follow learning resource for implementing Recurrent Neural Network (RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve results. This book will teach you the fundamentals of RNNs, with example applications in Python and the TensorFlow library. The examples are accompanied by the right combination of theoretical knowledge and real-world implementations of concepts to build a solid foundation of neural network modeling.
Your journey starts with the simplest RNN model, where you can grasp the fundamentals. The book then builds on this by proposing more advanced and complex algorithms. We use them to explain how a typical state-of-the-art RNN model works. From generating text to building a language translator, we show how some of today's most powerful AI applications work under the hood.
After reading the book, you will be confident with the fundamentals of RNNs, and be ready to pursue further study, along with developing skills in this exciting field.
This book is for Machine Learning engineers and data scientists who want to learn about Recurrent Neural Network models with practical use-cases. Exposure to Python programming is required. Previous experience with TensorFlow will be helpful, but not mandatory.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 1,92 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781789132335
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781789132335
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781789132335
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781789132335_new
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Codice articolo C9781789132335
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Recurrent Neural Networks with Python Quick Start Guide 0.49. Book. Codice articolo BBS-9781789132335
Quantità: 5 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 122. Codice articolo 26384417572
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 122. Codice articolo 379453691
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 122. Codice articolo 18384417582
Quantità: 4 disponibili
Da: moluna, Greven, Germania
Condizione: New. Developers struggle to find an easy to follow learning resource for implementing Recurrent Neural Network(RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions fo. Codice articolo 448329961
Quantità: Più di 20 disponibili