Written by the core Optimus team, this comprehensive guide will help you to understand how Optimus improves the whole data processing landscape
Optimus is a Python library that works as a unified API for data cleaning, processing, and merging data. It can be used for handling small and big data on your local laptop or on remote clusters using CPUs or GPUs.
The book begins by covering the internals of Optimus and how it works in tandem with the existing technologies to serve your data processing needs. You'll then learn how to use Optimus for loading and saving data from text data formats such as CSV and JSON files, exploring binary files such as Excel, and for columnar data processing with Parquet, Avro, and OCR. Next, you'll get to grips with the profiler and its data types - a unique feature of Optimus Dataframe that assists with data quality. You'll see how to use the plots available in Optimus such as histogram, frequency charts, and scatter and box plots, and understand how Optimus lets you connect to libraries such as Plotly and Altair. You'll also delve into advanced applications such as feature engineering, machine learning, cross-validation, and natural language processing functions and explore the advancements in Optimus. Finally, you'll learn how to create data cleaning and transformation functions and add a hypothetical new data processing engine with Optimus.
By the end of this book, you'll be able to improve your data science workflow with Optimus easily.
This book is for Python developers who want to explore, transform, and prepare big data for machine learning, analytics, and reporting using Optimus, a unified API to work with Pandas, Dask, cuDF, Dask-cuDF, Vaex, and Spark. Although not necessary, beginner-level knowledge of Python will be helpful. Basic knowledge of the CLI is required to install Optimus and its requirements. For using GPU technologies, you'll need an NVIDIA graphics card compatible with NVIDIA's RAPIDS library, which is compatible with Windows 10 and Linux.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Argenis Leon created Optimus, an open-source python library built over PySpark aimed to provide an easy-to-use API to clean, process, and merge data at scale. Since 2012, Argenis has been working on big data-related projects using Postgres, MongoDB, Elasticsearch for social media data collection and analytics. In 2015, he started working on Machine learning projects in Retail, AdTech, and Real Estate in Venezuela and Mexico. In 2019 he created Bumblebee, a low-code open-source web platform to clean and wrangle big data using CPU and GPUs using NVIDIA RAPIDS. Nowadays Argenis is Co-founder and CTO of boitas.com (backed by YCombinator) a wholesale marketplace for SMB in Latin America.
Luis Aguirre began working with web development projects for Mood Agency in 2018, creating sites for brands from all across Latin America. One year later he started working on Bumblebee, a low-code web platform to transform data that uses Optimus. In mid-2020 he started participating in the Optimus project as a core developer; focusing on creating the easiest-to-use experience for both projects. In 2021 he started working on the Optimus REST API, a tool to allow requests from the web focused on data wrangling.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,10 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 5,82 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781801079563
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781801079563
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781801079563
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781801079563_new
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Data Processing with Optimus: Supercharge big data preparation tasks for analytics and machine learning with Optimus using Dask and PySpark 1.14. Book. Codice articolo BBS-9781801079563
Quantità: 5 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Codice articolo C9781801079563
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 43164118-n
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Data Processing with Optimus helps you learn how to load, clean, and transform data easily with Optimus. This book is a step-by-step guide for preparing data to perform key data science tasks such as machine learning, analytics, feature engineering, and rep. Codice articolo 532387629
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 43164118-n
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 300. Codice articolo 389392100
Quantità: 4 disponibili