Master the art of training vision and large language models with conceptual fundaments and industry-expert guidance. Learn about AWS services and design patterns, with relevant coding examples
Key Features:
Book Description:
Foundation models have forever changed machine learning. From BERT to ChatGPT, CLIP to Stable Diffusion, when billions of parameters are combined with large datasets and hundreds to thousands of GPUs, the result is nothing short of record-breaking. The recommendations, advice, and code samples in this book will help you pretrain and fine-tune your own foundation models from scratch on AWS and Amazon SageMaker, while applying them to hundreds of use cases across your organization.
With advice from seasoned AWS and machine learning expert Emily Webber, this book helps you learn everything you need to go from project ideation to dataset preparation, training, evaluation, and deployment for large language, vision, and multimodal models. With step-by-step explanations of essential concepts and practical examples, you'll go from mastering the concept of pretraining to preparing your dataset and model, configuring your environment, training, fine-tuning, evaluating, deploying, and optimizing your foundation models.
You will learn how to apply the scaling laws to distributing your model and dataset over multiple GPUs, remove bias, achieve high throughput, and build deployment pipelines.
By the end of this book, you'll be well equipped to embark on your own project to pretrain and fine-tune the foundation models of the future.
What You Will Learn:
Who this book is for:
If you're a machine learning researcher or enthusiast who wants to start a foundation modelling project, this book is for you. Applied scientists, data scientists, machine learning engineers, solution architects, product managers, and students will all benefit from this book. Intermediate Python is a must, along with introductory concepts of cloud computing. A strong understanding of deep learning fundamentals is needed, while advanced topics will be explained. The content covers advanced machine learning and cloud techniques, explaining them in an actionable, easy-to-understand way.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Emily Webber is a Principal Machine Learning Specialist Solutions Architect at Amazon Web Services. She has assisted hundreds of customers on their journey to ML in the cloud, specializing in distributed training for large language and vision models. She mentors Machine Learning Solution Architects, authors countless feature designs for SageMaker and AWS, and guides the Amazon SageMaker product and engineering teams on best practices in regards around machine learning and customers. Emily is widely known in the AWS community for a 16-video YouTube series featuring SageMaker with 160,000 views, plus a Keynote at O’Reilly AI London 2019 on a novel reinforcement learning approach she developed for public policy.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,17 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 7,73 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26395932973
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781804618257
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 401525490
Quantità: 1 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781804618257
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781804618257
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Pretrain Vision and Large Language Models in Python: End-to-end techniques for building and deploying foundation models on AWS 0.99. Book. Codice articolo BBS-9781804618257
Quantità: 5 disponibili
Da: Rarewaves.com UK, London, Regno Unito
Paperback. Condizione: New. Master the art of training vision and large language models with conceptual fundaments and industry-expert guidance. Learn about AWS services and design patterns, with relevant coding examplesKey FeaturesLearn to develop, train, tune, and apply foundation models with optimized end-to-end pipelinesExplore large-scale distributed training for models and datasets with AWS and SageMaker examplesEvaluate, deploy, and operationalize your custom models with bias detection and pipeline monitoringBook DescriptionFoundation models have forever changed machine learning. From BERT to ChatGPT, CLIP to Stable Diffusion, when billions of parameters are combined with large datasets and hundreds to thousands of GPUs, the result is nothing short of record-breaking. The recommendations, advice, and code samples in this book will help you pretrain and fine-tune your own foundation models from scratch on AWS and Amazon SageMaker, while applying them to hundreds of use cases across your organization.With advice from seasoned AWS and machine learning expert Emily Webber, this book helps you learn everything you need to go from project ideation to dataset preparation, training, evaluation, and deployment for large language, vision, and multimodal models. With step-by-step explanations of essential concepts and practical examples, you'll go from mastering the concept of pretraining to preparing your dataset and model, configuring your environment, training, fine-tuning, evaluating, deploying, and optimizing your foundation models.You will learn how to apply the scaling laws to distributing your model and dataset over multiple GPUs, remove bias, achieve high throughput, and build deployment pipelines.By the end of this book, you'll be well equipped to embark on your own project to pretrain and fine-tune the foundation models of the future.What you will learnFind the right use cases and datasets for pretraining and fine-tuningPrepare for large-scale training with custom accelerators and GPUsConfigure environments on AWS and SageMaker to maximize performanceSelect hyperparameters based on your model and constraintsDistribute your model and dataset using many types of parallelismAvoid pitfalls with job restarts, intermittent health checks, and moreEvaluate your model with quantitative and qualitative insightsDeploy your models with runtime improvements and monitoring pipelinesWho this book is forIf you're a machine learning researcher or enthusiast who wants to start a foundation modelling project, this book is for you. Applied scientists, data scientists, machine learning engineers, solution architects, product managers, and students will all benefit from this book. Intermediate Python is a must, along with introductory concepts of cloud computing. A strong understanding of deep learning fundamentals is needed, while advanced topics will be explained. The content covers advanced machine learning and cloud techniques, explaining them in an actionable, easy-to-understand way. Codice articolo LU-9781804618257
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781804618257_new
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 46101339-n
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Codice articolo C9781804618257
Quantità: Più di 20 disponibili