Articoli correlati a Deep Learning with R for Beginners: Design neural network...

Deep Learning with R for Beginners: Design neural network models in R 3.5 using TensorFlow, Keras, and MXNet - Brossura

 
9781838642709: Deep Learning with R for Beginners: Design neural network models in R 3.5 using TensorFlow, Keras, and MXNet

Sinossi

Explore the world of neural networks by building powerful deep learning models using the R ecosystem

Key Features

  • Get to grips with the fundamentals of deep learning and neural networks
  • Use R 3.5 and its libraries and APIs to build deep learning models for computer vision and text processing
  • Implement effective deep learning systems in R with the help of end-to-end projects

Book Description

Deep learning finds practical applications in several domains, while R is the preferred language for designing and deploying deep learning models.

This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you'll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The book will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you'll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R.

By the end of this Learning Path, you'll be well versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects.

This Learning Path includes content from the following Packt products:

  • R Deep Learning Essentials - Second Edition by Joshua F. Wiley and Mark Hodnett
  • R Deep Learning Projects by Yuxi (Hayden) Liu and Pablo Maldonado

What you will learn

  • Implement credit card fraud detection with autoencoders
  • Train neural networks to perform handwritten digit recognition using MXNet
  • Reconstruct images using variational autoencoders
  • Explore the applications of autoencoder neural networks in clustering and dimensionality reduction
  • Create natural language processing (NLP) models using Keras and TensorFlow in R
  • Prevent models from overfitting the data to improve generalizability
  • Build shallow neural network prediction models

Who this book is for

This Learning Path is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. A fundamental understanding of R programming and familiarity with the basic concepts of deep learning are necessary to get the most out of this Learning Path.

Table of Contents

  1. Getting Started with Deep Learning
  2. Training a Prediction Model
  3. Deep Learning Fundamentals
  4. Training Deep Prediction Models
  5. Image Classification Using Convolutional Neural Networks
  6. Tuning and Optimizing Models
  7. Natural Language Processing Using Deep Learning
  8. Deep Learning Models Using TensorFlow in R
  9. Anomaly Detection and Recommendation Systems
  10. Running Deep Learning Models in the Cloud
  11. The Next Level in Deep Learning
  12. Handwritten Digit Recognition Using Convolutional Neural Networks
  13. Traffic Sign Recognition for Intelligent Vehicles
  14. Fraud Detection with Autoencoders
  15. Text Generation Using Recurrent Neural Networks
  16. Sentiment Analysis with Word Embeddings

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Mark Hodnett is a data scientist with over 20 years of industry experience in software development, business intelligence systems, and data science. He has worked in a variety of industries, including CRM systems, retail loyalty, IoT systems, and accountancy. He holds a master's in data science and an MBA. He works in Cork, Ireland, as a senior data scientist with AltViz.

Joshua F. Wiley is a lecturer at Monash University, conducting quantitative research on sleep, stress, and health. He earned his Ph.D. from the University of California, Los Angeles and completed postdoctoral training in primary care and prevention. In statistics and data science, Joshua focuses on biostatistics and is interested in reproducible research and graphical displays of data and statistical models. He develops or co-develops a number of R packages including Varian, a package to conduct Bayesian scale-location structural equation models, and MplusAutomation, a popular package that links R to the commercial Mplus software.

Yuxi (Hayden) Liu is an experienced data scientist who's focused on developing machine learning and deep learning models and systems. He has worked in a variety of data-driven domains and has applied his machine learning expertise to computational advertising, recommendation, and network anomaly detection. He published five first-authored IEEE transaction and conference papers during his master's research at the University of Toronto. He is an education enthusiast and the author of a series of machine learning books. His first book, the first edition of Python Machine Learning By Example, was a #1 bestseller on Amazon India in 2017 and 2018. His other books include R Deep Learning Projects and Hands-On Deep Learning Architectures with Python published by Packt.

Pablo Maldonado is an applied mathematician and data scientist with a taste for software development since his days of programming BASIC on a Tandy 1000. As an academic and business consultant, he spends a great deal of his time building applied artificial intelligence solutions for text analytics, sensor and transactional data, and reinforcement learning. Pablo earned his Ph.D. in applied mathematics (with focus on mathematical game theory) at the Universite Pierre et Marie Curie in Paris, France.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Gut/Very good: Buch bzw. Schutzumschlag...
Visualizza questo articolo

EUR 4,50 per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 6,98 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Risultati della ricerca per Deep Learning with R for Beginners: Design neural network...

Foto dell'editore

Hodnett, Mark, Wiley, Joshua F.
Editore: Packt Publishing, 2019
ISBN 10: 1838642706 ISBN 13: 9781838642709
Antico o usato Brossura

Da: medimops, Berlin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Codice articolo M01838642706-V

Contatta il venditore

Compra usato

EUR 15,75
Convertire valuta
Spese di spedizione: EUR 4,50
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Mark Hodnett
Editore: Packt Publishing, 2019
ISBN 10: 1838642706 ISBN 13: 9781838642709
Nuovo PAP
Print on Demand

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781838642709

Contatta il venditore

Compra nuovo

EUR 52,64
Convertire valuta
Spese di spedizione: EUR 6,98
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Mark Hodnett
Editore: Packt Publishing, 2019
ISBN 10: 1838642706 ISBN 13: 9781838642709
Nuovo PAP
Print on Demand

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781838642709

Contatta il venditore

Compra nuovo

EUR 61,37
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Hodnett, Mark; Wiley, Joshua F.; Liu, Yuxi (Hayden); Maldonado, Pablo
Editore: Packt Publishing, 2019
ISBN 10: 1838642706 ISBN 13: 9781838642709
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781838642709_new

Contatta il venditore

Compra nuovo

EUR 51,72
Convertire valuta
Spese di spedizione: EUR 10,37
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado
ISBN 10: 1838642706 ISBN 13: 9781838642709
Nuovo Paperback

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Codice articolo 6666-IUK-9781838642709

Contatta il venditore

Compra nuovo

EUR 48,54
Convertire valuta
Spese di spedizione: EUR 23,05
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Foto dell'editore

Hodnett, Mark; Wiley, Joshua F.; Liu, Yuxi (Hayden); Maldonado, Pablo
Editore: Packt Publishing, Limited, 2019
ISBN 10: 1838642706 ISBN 13: 9781838642709
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand pp. 612. Codice articolo 369194619

Contatta il venditore

Compra nuovo

EUR 61,96
Convertire valuta
Spese di spedizione: EUR 10,21
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Hodnett, Mark|Wiley, Joshua F.|Liu, Yuxi (Hayden)
Editore: Packt Publishing, 2019
ISBN 10: 1838642706 ISBN 13: 9781838642709
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This Learning Path is your step-by-step guide to building deep learning models using R s wide range of deep learning libraries and frameworks. Through multiple real-world projects and expert guidance and tips, you ll gain the exact knowledge you need to get. Codice articolo 290355093

Contatta il venditore

Compra nuovo

EUR 64,62
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Mark Hodnett
Editore: Packt Publishing, 2019
ISBN 10: 1838642706 ISBN 13: 9781838642709
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Explore the world of neural networks by building powerful deep learning models using the R ecosystemKey Features: Get to grips with the fundamentals of deep learning and neural networks Use R 3.5 and its libraries and APIs to build deep learning models for computer vision and text processing Implement effective deep learning systems in R with the help of end-to-end projectsBook Description:Deep learning has a range of practical applications in several domains, while R is the preferred language for designing and deploying deep learning models.This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you'll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The Learning Path will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you'll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R.By the end of this Learning Path, you'll be well-versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects.What You Will Learn: Implement credit card fraud detection with autoencoders Train neural networks to perform handwritten digit recognition using MXNet Reconstruct images using variational autoencoders Explore the applications of autoencoder neural networks in clustering and dimensionality reduction Create natural language processing (NLP) models using Keras and TensorFlow in R Prevent models from overfitting the data to improve generalizability Build shallow neural network prediction modelsWho this book is for:This Learning Path is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. A fundamental understanding of R programming and familiarity with the basic concepts of deep learning are necessary to get the most out of this Learning Path. Codice articolo 9781838642709

Contatta il venditore

Compra nuovo

EUR 75,72
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Hodnett, Mark, Wiley, Joshua F., Liu, Yuxi (Hayden), Maldona
Editore: Packt Publishing, 2019
ISBN 10: 1838642706 ISBN 13: 9781838642709
Nuovo Paperback

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. New. book. Codice articolo ERICA75818386427065

Contatta il venditore

Compra nuovo

EUR 84,34
Convertire valuta
Spese di spedizione: EUR 28,83
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Hodnett, Mark; Wiley, Joshua F.; Liu, Yuxi (Hayden); Maldonado, Pablo
Editore: Packt Publishing, 2019
ISBN 10: 1838642706 ISBN 13: 9781838642709
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar2912160228332

Contatta il venditore

Compra nuovo

EUR 51,38
Convertire valuta
Spese di spedizione: EUR 64,51
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello