We have witnessed an explosion of research activity around nature-inspired computing and bio-inspired optimization techniques, which can provide powerful tools for solving learning problems and data analysis in very large data sets. To design and implement optimization algorithms, several methods are used that bring superior performance. However, in some applications, the search space increases exponentially with the problem size. To overcome these limitations and to solve efficiently large scale combinatorial and highly nonlinear optimization problems, more flexible and adaptable algorithms are necessary.
Nature-inspired computing is oriented towards the application of outstanding information-processing aptitudes of the natural realm to the computational domain. The discipline of nature-inspired optimization algorithms is a major field of computational intelligence, soft computing and optimization. Metaheuristic search algorithms with population-based frameworks are capable of handling optimization in high-dimensional real-world problems for several domains including imaging, IoT, smart manufacturing, and healthcare. The integration of intelligence with smart technology enhances accuracy and efficiency. Smart devices and systems are revolutionizing the world by linking innovative thinking with innovative action and innovative implementation.
The aim of this edited book is to review the intertwining disciplines of nature-inspired computing and bio-inspired soft-computing (BISC) and their applications to real world challenges. The contributors cover the interaction between metaheuristics, such as evolutionary algorithms and swarm intelligence, with complex systems. They explain how to better handle different kinds of uncertainties in real-life problems using state-of-art of machine learning algorithms. They also explore future research perspectives to bridge the gap between theory and real-life day-to-day challenges for diverse domains of engineering.
The book will offer valuable insights to researchers and scientists from academia and industry in ICTs, IT and computer science, data science, AI and machine learning, swarm intelligence and complex systems. It is also a useful resource for professionals in related fields, and for advanced students with an interest in optimization and IoT applications.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,19 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 7,74 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781839535161
Quantità: Più di 20 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-237428
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 47505093-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 47505093
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 47505093
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 47505093-n
Quantità: Più di 20 disponibili
Da: Rarewaves USA, OSWEGO, IL, U.S.A.
Hardback. Condizione: New. We have witnessed an explosion of research activity around nature-inspired computing and bio-inspired optimization techniques, which can provide powerful tools for solving learning problems and data analysis in very large data sets. To design and implement optimization algorithms, several methods are used that bring superior performance. However, in some applications, the search space increases exponentially with the problem size. To overcome these limitations and to solve efficiently large scale combinatorial and highly nonlinear optimization problems, more flexible and adaptable algorithms are necessary. Nature-inspired computing is oriented towards the application of outstanding information-processing aptitudes of the natural realm to the computational domain. The discipline of nature-inspired optimization algorithms is a major field of computational intelligence, soft computing and optimization. Metaheuristic search algorithms with population-based frameworks are capable of handling optimization in high-dimensional real-world problems for several domains including imaging, IoT, smart manufacturing, and healthcare. The integration of intelligence with smart technology enhances accuracy and efficiency. Smart devices and systems are revolutionizing the world by linking innovative thinking with innovative action and innovative implementation. The aim of this edited book is to review the intertwining disciplines of nature-inspired computing and bio-inspired soft-computing (BISC) and their applications to real world challenges. The contributors cover the interaction between metaheuristics, such as evolutionary algorithms and swarm intelligence, with complex systems. They explain how to better handle different kinds of uncertainties in real-life problems using state-of-art of machine learning algorithms. They also explore future research perspectives to bridge the gap between theory and real-life day-to-day challenges for diverse domains of engineering. The book will offer valuable insights to researchers and scientists from academia and industry in ICTs, IT and computer science, data science, AI and machine learning, swarm intelligence and complex systems. It is also a useful resource for professionals in related fields, and for advanced students with an interest in optimization and IoT applications. Codice articolo LU-9781839535161
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Codice articolo C9781839535161
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
HRD. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L1-9781839535161
Quantità: Più di 20 disponibili
Da: Rarewaves USA United, OSWEGO, IL, U.S.A.
Hardback. Condizione: New. We have witnessed an explosion of research activity around nature-inspired computing and bio-inspired optimization techniques, which can provide powerful tools for solving learning problems and data analysis in very large data sets. To design and implement optimization algorithms, several methods are used that bring superior performance. However, in some applications, the search space increases exponentially with the problem size. To overcome these limitations and to solve efficiently large scale combinatorial and highly nonlinear optimization problems, more flexible and adaptable algorithms are necessary. Nature-inspired computing is oriented towards the application of outstanding information-processing aptitudes of the natural realm to the computational domain. The discipline of nature-inspired optimization algorithms is a major field of computational intelligence, soft computing and optimization. Metaheuristic search algorithms with population-based frameworks are capable of handling optimization in high-dimensional real-world problems for several domains including imaging, IoT, smart manufacturing, and healthcare. The integration of intelligence with smart technology enhances accuracy and efficiency. Smart devices and systems are revolutionizing the world by linking innovative thinking with innovative action and innovative implementation. The aim of this edited book is to review the intertwining disciplines of nature-inspired computing and bio-inspired soft-computing (BISC) and their applications to real world challenges. The contributors cover the interaction between metaheuristics, such as evolutionary algorithms and swarm intelligence, with complex systems. They explain how to better handle different kinds of uncertainties in real-life problems using state-of-art of machine learning algorithms. They also explore future research perspectives to bridge the gap between theory and real-life day-to-day challenges for diverse domains of engineering. The book will offer valuable insights to researchers and scientists from academia and industry in ICTs, IT and computer science, data science, AI and machine learning, swarm intelligence and complex systems. It is also a useful resource for professionals in related fields, and for advanced students with an interest in optimization and IoT applications. Codice articolo LU-9781839535161
Quantità: Più di 20 disponibili