Applied RVE Reconstruction and Homogenization of Heterogeneous Materials
Statistical correlation functions are a well-known class of statistical descriptors that can be used to describe the morphology and the microstructure-properties relationship. A comprehensive study has been performed for the use of these correlation functions for the reconstruction and homogenization in nanocomposite materials. Correlation functions are measured from different techniques such as microscopy (SEM or TEM), small angle X-ray scattering (SAXS) and can be generated through Monte Carlo simulations. In this book, different experimental techniques such as SAXS and image processing are presented, which are used to measure two-point correlation function correlation for multi-phase polymer composites.
Higher order correlation functions must be calculated or measured to increase the precision of the statistical continuum approach. To achieve this aim, a new approximation methodology is utilized to obtain N-point correlation functions for multiphase heterogeneous materials. The two-point functions measured by different techniques have been exploited to reconstruct the microstructure of heterogeneous media.
Statistical continuum theory is used to predict the effective thermal conductivity and elastic modulus of polymer composites. N-point probability functions as statistical descriptors of inclusions have been exploited to solve strong contrast homogenization for effective thermal conductivity and elastic modulus properties of heterogeneous materials.
Finally, reconstructed microstructure is used to calculate effective properties and damage modeling of heterogeneous materials.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Yves Rémond is Distinguished Professor (Exceptional Class) at the University of Strasbourg in France.
Saïd Ahzi is a Research Director of the Materials Science and Engineering group at Qatar Environment and Energy Research Institute (QEERI) and Professor at the College of Science & Engineering, Hamad Bin Khalifa University, Qatar Foundation, Qatar.
Majid Baniassadi is Assistant Professor at the School of Mechanical Engineering, University of Tehran, Iran.
Hamid Garmestani is Professor of Materials Science and Engineering at Georgia Institute of Technology, USA and a Fellow of the American Society of Materials (ASM International).
Statistical correlation functions are a well-known class of statistical descriptors that can be used to describe the morphology and the microstructure-properties relationship. A comprehensive study has been performed for the use of these correlation functions for the reconstruction and homogenization in nanocomposite materials. Correlation functions are measured from different techniques such as microscopy (SEM or TEM), small angle X-ray scattering (SAXS) and can be generated through Monte Carlo simulations. In this book, different experimental techniques such as SAXS and image processing are presented, which are used to measure two-point correlation function correlation for multi-phase polymer composites.
Higher order correlation functions must be calculated or measured to increase the precision of the statistical continuum approach. To achieve this aim, a new approximation methodology is utilized to obtain N-point correlation functions for multiphase heterogeneous materials. The two-point functions measured by different techniques have been exploited to reconstruct the microstructure of heterogeneous media.
Statistical continuum theory is used to predict the effective thermal conductivity and elastic modulus of polymer composites. N-point probability functions as statistical descriptors of inclusions have been exploited to solve strong contrast homogenization for effective thermal conductivity and elastic modulus properties of heterogeneous materials.
Finally, reconstructed microstructure is used to calculate effective properties and damage modeling of heterogeneous materials.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 24793785-n
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condizione: new. Hardcover. Applied RVE Reconstruction and Homogenization of Heterogeneous Materials Statistical correlation functions are a well-known class of statistical descriptors that can be used to describe the morphology and the microstructure-properties relationship. A comprehensive study has been performed for the use of these correlation functions for the reconstruction and homogenization in nanocomposite materials. Correlation functions are measured from different techniques such as microscopy (SEM or TEM), small angle X-ray scattering (SAXS) and can be generated through Monte Carlo simulations. In this book, different experimental techniques such as SAXS and image processing are presented, which are used to measure two-point correlation function correlation for multi-phase polymer composites. Higher order correlation functions must be calculated or measured to increase the precision of the statistical continuum approach. To achieve this aim, a new approximation methodology is utilized to obtain N-point correlation functions for multiphase heterogeneous materials. The two-point functions measured by different techniques have been exploited to reconstruct the microstructure of heterogeneous media. Statistical continuum theory is used to predict the effective thermal conductivity and elastic modulus of polymer composites. N-point probability functions as statistical descriptors of inclusions have been exploited to solve strong contrast homogenization for effective thermal conductivity and elastic modulus properties of heterogeneous materials. Finally, reconstructed microstructure is used to calculate effective properties and damage modeling of heterogeneous materials. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781848219014
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2912160248585
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781848219014
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 24793785
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 24793785-n
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. New copy - Usually dispatched within 4 working days. Codice articolo B9781848219014
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 24793785
Quantità: Più di 20 disponibili
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. Num Pages: 206 pages, black & white illustrations. BIC Classification: TBN; TGM. Category: (P) Professional & Vocational. Dimension: 241 x 163 x 17. Weight in Grams: 458. . 2016. 1st Edition. hardcover. . . . . Codice articolo V9781848219014
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. KlappentextStatistical correlation functions are a well-known class of statistical descriptors that can be used to describe the morphology and the microstructure-properties relationship. A comprehensive study has been performed for th. Codice articolo 448373020
Quantità: Più di 20 disponibili