Spectral analysis requires subjective decisions which influence the final estimate and mean that different analysts can obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that is only acceptable if it is close to the best attainable accuracy for most types of stationary data. This book describes a method which fulfils the above near-optimal-solution criterion, taking advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Piet M.T. Broersen received the Ph.D. degree in 1976, from the Delft University of Technology in the Netherlands.
He is currently with the Department of Multi-scale Physics at TU Delft. His main research interest is in automatic identification on statistical grounds. He has developed a practical solution for the spectral and autocorrelation analysis of stochastic data by the automatic selection of a suitable order and type for a time series model of the data.
Automatic Autocorrelation and Spectral Analysis gives random data a language to communicate the information they contain objectively.
In the current practice of spectral analysis, subjective decisions have to be made all of which influence the final spectral estimate and mean that different analysts obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that solution is only acceptable if it is close to the best attainable accuracy for most types of stationary data.
Automatic Autocorrelation and Spectral Analysis describes a method which fulfils the above near-optimal-solution criterion. It takes advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data. Improved order selection quality guarantees that one of the best (and often the best) will be selected automatically. The data themselves suggest their best representation. Should the analyst wish to intervene, alternatives can be provided. Written for graduate signal processing students and for researchers and engineers using time series analysis for practical applications ranging from breakdown prevention in heavy machinery to measuring lung noise for medical diagnosis, this text offers:
tuition in how power spectral density and the autocorrelation function of stochastic data can be estimated and interpreted in time series models;
extensive support for the MATLAB® ARMAsel toolbox;
applications showing the methods in action;
appropriate mathematics for students to apply the methods with references for those who wish to develop them further.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,98 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Shows the reader which spectral methods (algorithms) are useful in practiceDemonstrates the clear advantages of using parametric rather than non-parametric models for spectral analysisProvides the reader with detailed assistance in using th. Codice articolo 4288706
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Automatic Autocorrelation and Spectral Analysis gives random data a language to communicate the information they contain objectively.In the current practice of spectral analysis, subjective decisions have to be made all of which influence the final spectral estimate and mean that different analysts obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that solution is only acceptable if it is close to the best attainable accuracy for most types of stationary data.Automatic Autocorrelation and Spectral Analysis describes a method which fulfils the above near-optimal-solution criterion. It takes advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data. Improved order selection quality guarantees that one of the best (and often the best) will be selected automatically. The data themselves suggest their best representation. Should the analyst wish to intervene, alternatives can be provided. Written for graduate signal processing students and for researchers and engineers using time series analysis for practical applications ranging from breakdown prevention in heavy machinery to measuring lung noise for medical diagnosis, this text offers: tuition in how power spectral density and the autocorrelation function of stochastic data can be estimated and interpreted in time series models; extensive support for the MATLAB® ARMAsel toolbox; applications showing the methods in action; appropriate mathematics for students to apply the methods with references for those who wish to develop them further. 312 pp. Englisch. Codice articolo 9781849965811
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -'Automatic Autocorrelation and Spectral Analysis' gives random data a language to communicate the information they contain objectively. It takes advantage of greater computing power and robust algorithms to produce enough candidate models of a given group of data to be sure of providing a suitable one. Improved order selection guarantees that one of the best (often the best) will be selected automatically. Written for graduate signal processing students and for researchers and engineers using time series analysis for applications ranging from breakdown prevention in heavy machinery to measuring lung noise for medical diagnosis, this text offers: tuition in how power spectral density and the autocorrelation function of stochastic data can be estimated and interpreted in time series models; extensive support for the MATLAB® ARMAsel toolbox; applications showing the methods in action; appropriate mathematics for students to apply the methods with references for those who wish to develop them further.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 312 pp. Englisch. Codice articolo 9781849965811
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - 'Automatic Autocorrelation and Spectral Analysis' gives random data a language to communicate the information they contain objectively. It takes advantage of greater computing power and robust algorithms to produce enough candidate models of a given group of data to be sure of providing a suitable one. Improved order selection guarantees that one of the best (often the best) will be selected automatically. Written for graduate signal processing students and for researchers and engineers using time series analysis for applications ranging from breakdown prevention in heavy machinery to measuring lung noise for medical diagnosis, this text offers:- tuition in how power spectral density and the autocorrelation function of stochastic data can be estimated and interpreted in time series models;- extensive support for the MATLAB® ARMAsel toolbox;- applications showing the methods in action;- appropriate mathematics for students to apply the methods with references for those who wish to develop them further. Codice articolo 9781849965811
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 312. Codice articolo 262169767
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 312 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 5678200
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 312. Codice articolo 182169773
Quantità: 4 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781849965811_new
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 499. Codice articolo C9781849965811
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9781849965811
Quantità: 10 disponibili