Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines - Brossura

 
9783030065522: Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines

Sinossi

This book introduces design techniques developed to increase the safety of aircraft engines, and demonstrates how the application of stochastic methods can overcome problems in the accurate prediction of engine lift caused by manufacturing error. This in turn addresses the issue of achieving required safety margins when hampered by limits in current design and manufacturing methods. The authors show that avoiding the potential catastrophe generated by the failure of an aircraft engine relies on the prediction of the correct behaviour of microscopic imperfections. This book shows how to quantify the possibility of such failure, and that it is possible to design components that are inherently less risky and more reliable.

This new, updated and significantly expanded edition gives an introduction to engine reliability and safety to contextualise this important issue, evaluates newly-proposed methods for uncertainty quantification as applied to jet engines.

Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines will be of use to gas turbine manufacturers and designers as well as CFD practitioners, specialists and researchers. Graduate and final year undergraduate students in aerospace or mathematical engineering may also find it of interest.


Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Dr. Francesco Montomoli is a Senior Lecturer at Imperial College London. He is also a Chartered Engineer of Ordine degli Ingegneri della Provincia di Firenze, Italy. His main area of work is the study and development of gas turbines for aeronautical propulsion and power generation, and the application of computational fluid dynamics to such problems.

Dalla quarta di copertina

This book introduces design techniques developed to increase the safety of aircraft engines, and demonstrates how the application of stochastic methods can overcome problems in the accurate prediction of engine lift caused by manufacturing error. This in turn addresses the issue of achieving required safety margins when hampered by limits in current design and manufacturing methods. The authors show that avoiding the potential catastrophe generated by the failure of an aircraft engine relies on the prediction of the correct behaviour of microscopic imperfections. This book shows how to quantify the possibility of such failure, and that it is possible to design components that are inherently less risky and more reliable.

This new, updated and significantly expanded edition gives an introduction to engine reliability and safety to contextualise this important issue, evaluates newly-proposed methods for uncertainty quantification as applied to jet engines.

Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines will be of use to gas turbine manufacturers and designers as well as CFD practitioners, specialists and researchers. Graduate and final year undergraduate students in aerospace or mathematical engineering may also find it of interest.


Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9783319929422: Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines

Edizione in evidenza

ISBN 10:  3319929429 ISBN 13:  9783319929422
Casa editrice: Springer Nature, 2018
Rilegato