Articoli correlati a Python for Probability, Statistics, and Machine Learning

Python for Probability, Statistics, and Machine Learning - Rilegato

 
9783030185442: Python for Probability, Statistics, and Machine Learning

Sinossi

This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas.  All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. 

This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms.   As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy.  Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy,  Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels,  and Keras.

This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Dr. José Unpingco completed his PhD at the University of California, San Diego in 1997 and has since worked in industry as an engineer, consultant, and instructor on a wide-variety of advanced data processing and analysis topics, with deep experience in machine learning and statistics. As the onsite technical director for large-scale Signal and Image Processing for the Department of Defense (DoD), he spearheaded the DoD-wide adoption of scientific Python. He also trained over 600 scientists and engineers to effectively utilize Python for a wide range of scientific topics -- from weather modeling to antenna analysis. Dr. Unpingco is the cofounder and Senior Director for Data Science at a non-profit Medical Research Organization in San Diego, California. He also teaches programming for data analysis at the University of California, San Diego for engineering undergraduate/graduate students. He is author of Python for Signal Processing (Springer 2014) and Python for Probability, Statistics, and Machine Learning (2016) 

Dalla quarta di copertina

This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas.  All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples.

 This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms.   As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy.  Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy,  Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels,  and Keras. 

This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer Nature
  • Data di pubblicazione2019
  • ISBN 10 3030185443
  • ISBN 13 9783030185442
  • RilegaturaCopertina rigida
  • LinguaInglese
  • Numero edizione2
  • Numero di pagine384
  • Contatto del produttorenon disponibile

Compra usato

unread, cover with shelfwear or...
Visualizza questo articolo

EUR 11,90 per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 35,09 per la spedizione da Canada a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783030185473: Python for Probability, Statistics, and Machine Learning

Edizione in evidenza

ISBN 10:  3030185478 ISBN 13:  9783030185473
Casa editrice: Springer, 2020
Brossura

Risultati della ricerca per Python for Probability, Statistics, and Machine Learning

Foto dell'editore

Unpingco, José
Editore: Springer, 2019
ISBN 10: 3030185443 ISBN 13: 9783030185442
Antico o usato Rilegato

Da: SpringBooks, Berlin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Very Good. 2. Auflage. unread, cover with shelfwear or minor damages. Codice articolo CE-2301C-TEPPICHMILI-46-1000

Contatta il venditore

Compra usato

EUR 32,59
Convertire valuta
Spese di spedizione: EUR 11,90
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Unpingco, José
ISBN 10: 3030185443 ISBN 13: 9783030185442
Antico o usato Rilegato

Da: Better World Books, Mishawaka, IN, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Codice articolo 44935774-75

Contatta il venditore

Compra usato

EUR 46,35
Convertire valuta
Spese di spedizione: EUR 18,24
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Unpingco, José
Editore: Springer, 2019
ISBN 10: 3030185443 ISBN 13: 9783030185442
Antico o usato Rilegato

Da: SecondSale, Montgomery, IL, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00070997955

Contatta il venditore

Compra usato

EUR 43,23
Convertire valuta
Spese di spedizione: EUR 30,70
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Unpingco, José
ISBN 10: 3030185443 ISBN 13: 9783030185442
Antico o usato Rilegato

Da: BooksRun, Philadelphia, PA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Good. 2nd ed. 2019. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Codice articolo 3030185443-11-1

Contatta il venditore

Compra usato

EUR 40,89
Convertire valuta
Spese di spedizione: EUR 65,79
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Unpingco, José
Editore: Springer, 2019
ISBN 10: 3030185443 ISBN 13: 9783030185442
Antico o usato Rilegato

Da: Blue Vase Books, Interlochen, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: good. The item shows wear from consistent use, but it remains in good condition and works perfectly. All pages and cover are intact including the dust cover, if applicable . Spine may show signs of wear. Pages may include limited notes and highlighting. May NOT include discs, access code or other supplemental materials. Codice articolo BVV.3030185443.G

Contatta il venditore

Compra usato

EUR 43,32
Convertire valuta
Spese di spedizione: EUR 92,10
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Unpingco, Jose
Editore: SPRINGER NATURE, 2019
ISBN 10: 3030185443 ISBN 13: 9783030185442
Nuovo Rilegato

Da: Russell Books, Victoria, BC, Canada

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: New. Special order direct from the distributor. Codice articolo ING9783030185442

Contatta il venditore

Compra nuovo

EUR 121,96
Convertire valuta
Spese di spedizione: EUR 35,09
Da: Canada a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello