This book is divided into two parts, the first one to study the theory of differentiable functions between Banach spaces and the second to study the differential form formalism and to address the Stokes' Theorem and its applications. Related to the first part, there is an introduction to the content of Linear Bounded Operators in Banach Spaces with classic examples of compact and Fredholm operators, this aiming to define the derivative of Fréchet and to give examples in Variational Calculus and to extend the results to Fredholm maps. The Inverse Function Theorem is explained in full details to help the reader to understand the proof details and its motivations. The inverse function theorem and applications make up this first part. The text contains an elementary approach to Vector Fields and Flows, including the Frobenius Theorem. The Differential Forms are introduced and applied to obtain the Stokes Theorem and to define De Rham cohomology groups. As an application, the final chapter contains an introduction to the Harmonic Functions and a geometric approach to Maxwell's equations of electromagnetism.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
The author is Professor of Mathematics at the Universidade Federal de Santa Catarina where he is a faculty member since 1993. He holds a PhD title in Mathematics from the University of Warwick, England, under the supervision of Professor James Eells. His research interest lies on Global Analysis, concentrating on the geometry of Gauge Fields and its applications to the Topology and to the Geometry of differentiable manifolds. His scientific background includes a postdoctoral at the Mathematical Institute, Oxford University, England, and another at Michigan State University, USA.
This book is divided into two parts, the first one to study the theory of differentiable functions between Banach spaces and the second to study the differential form formalism and to address the Stokes' Theorem and its applications. Related to the first part, there is an introduction to the content of Linear Bounded Operators in Banach Spaces with classic examples of compact and Fredholm operators, this aiming to define the derivative of Fréchet and to give examples in Variational Calculus and to extend the results to Fredholm maps. The Inverse Function Theorem is explained in full details to help the reader to understand the proof details and its motivations. The inverse function theorem and applications make up this first part. The text contains an elementary approach to Vector Fields and Flows, including the Frobenius Theorem. The Differential Forms are introduced and applied to obtain the Stokes Theorem and to define De Rham cohomology groups. As an application, the final chapter contains an introduction to the Harmonic Functions and a geometric approach to Maxwell's equations of electromagnetism.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 7,68 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26396368184
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 400008935
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18396368178
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book is divided into two parts, the first one to study the theory of differentiable functions between Banach spaces and the second to study the differential form formalism and to address the Stokes Theorem and its applications. Related to the first. Codice articolo 663139756
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is divided into two parts, the first one to study the theory of differentiable functions between Banach spaces and the second to study the differential form formalism and to address the Stokes' Theorem and its applications. Related to the first part, there is an introduction to the content of Linear Bounded Operators in Banach Spaces with classic examples of compact and Fredholm operators, this aiming to define the derivative of Fréchet and to give examples in Variational Calculus and to extend the results to Fredholm maps. The Inverse Function Theorem is explained in full details to help the reader to understand the proof details and its motivations. The inverse function theorem and applications make up this first part. The text contains an elementary approach to Vector Fields and Flows, including the Frobenius Theorem. The Differential Forms are introduced and applied to obtain the Stokes Theorem and to define De Rham cohomology groups. As an application, the final chapter contains an introduction to the Harmonic Functions and a geometric approach to Maxwell's equations of electromagnetism. 376 pp. Englisch. Codice articolo 9783030778361
Quantità: 2 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783030778361
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Differentiability in Banach Spaces, Differential Forms and Applications 1.16. Book. Codice articolo BBS-9783030778361
Quantità: 5 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is divided into two parts, the first one to study the theory of differentiable functions between Banach spaces and the second to study the differential form formalism and to address the Stokes' Theorem and its applications. Related to the first part, there is an introduction to the content of Linear Bounded Operators in Banach Spaces with classic examples of compact and Fredholm operators, this aiming to define the derivative of Fréchet and to give examples in Variational Calculus and to extend the results to Fredholm maps. The Inverse Function Theorem is explained in full details to help the reader to understand the proof details and its motivations. The inverse function theorem and applications make up this first part. The text contains an elementary approach to Vector Fields and Flows, including the Frobenius Theorem. The Differential Forms are introduced and applied to obtain the Stokes Theorem and to define De Rham cohomology groups. As an application, the finalchapter contains an introduction to the Harmonic Functions and a geometric approach to Maxwell's equations of electromagnetism. Codice articolo 9783030778361
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -This book is divided into two parts, the first one to study the theory of differentiable functions between Banach spaces and the second to study the differential form formalism and to address the Stokes' Theorem and its applications. Related to the first part, there is an introduction to the content of Linear Bounded Operators in Banach Spaces with classic examples of compact and Fredholm operators, this aiming to define the derivative of Fréchet and to give examples in Variational Calculus and to extend the results to Fredholm maps. The Inverse Function Theorem is explained in full details to help the reader to understand the proof details and its motivations. The inverse function theorem and applications make up this first part. The text contains an elementary approach to Vector Fields and Flows, including the Frobenius Theorem. The Differential Forms are introduced and applied to obtain the Stokes Theorem and to define De Rham cohomology groups. As an application, the finalchapter contains an introduction to the Harmonic Functions and a geometric approach to Maxwell's equations of electromagnetism.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 376 pp. Englisch. Codice articolo 9783030778361
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In English. Codice articolo ria9783030778361_new
Quantità: Più di 20 disponibili