This book provides a coherent description of foundational matters concerning statistical inference and shows how statistics can help us make inductive inferences about a broader context, based only on a limited dataset such as a random sample drawn from a larger population. By relating those basics to the methodological debate about inferential errors associated with p-values and statistical significance testing, readers are provided with a clear grasp of what statistical inference presupposes, and what it can and cannot do. To facilitate intuition, the representations throughout the book are as non-technical as possible.
Intended for readers with an interest in understanding the role of statistical inference, the book provides a prudent assessment of the knowledge gain that can be obtained from a particular set of data under consideration of the uncertainty caused by random error. More particularly, it offers an accessible resource for graduate students as well as statistical practitioners who have a basic knowledge of statistics. Last but not least, it is aimed at scientists with a genuine methodological interest in the above-mentioned reform debate.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Norbert Hirschauer is Professor of Agribusiness Management at the Martin Luther University Halle-Wittenberg, Germany. His research fields include whole-farm risk analysis, economics of crime and compliance, behavioral and experimental economics, and statistical inference. Since 2015, he has headed an informal working group that includes the book’s co-authors and concerns itself with inferential errors and the replication crisis in the social sciences.
Sven Grüner is a PostDoc in the Agribusiness Management Group of the Martin Luther University Halle-Wittenberg, Germany. His research focus lies in behavioral and experimental economics. Within this realm, he is interested in the external validity of behavioral study findings. He has been a member of the working group on inferential errors and the replication crisis since 2015.
Oliver Mußhoff is Professor of Farm Management at the Georg-August-University Göttingen, Germany. He has worked on a broad range of research questions in the field of agricultural economics, including modeling of entrepreneurial decisions, investment and finance, risk management as well as experimental impact analysis of agricultural policy measures. He has been a member of the working group on inferential errors and the replication crisis since 2015.
This book provides a coherent description of foundational matters concerning statistical inference and shows how statistics can help us make inductive inferences about a broader context, based only on a limited dataset such as a random sample drawn from a larger population. By relating those basics to the methodological debate about inferential errors associated with p-values and statistical significance testing, readers are provided with a clear grasp of what statistical inference presupposes, and what it can and cannot do. To facilitate intuition, the representations throughout the book are as non-technical as possible.
The book elucidates the probabilistic foundations and the potential of sample-based inferences, including random data generation, effect size estimation, and the assessment of estimation uncertainty caused by random error. Based on a thorough understanding of those basics, it then describes the p-value concept and the null-hypothesis-significance-testing ritual, and finally points out the ensuing inferential errors. This provides readers with the competence to avoid ill-guided statistical routines and misinterpretations of statistical quantities in the future.
Intended for readers with an interest in understanding the role of statistical inference, the book provides a prudent assessment of the knowledge gain that can be obtained from a particular set of data under consideration of the uncertainty caused by random error. More particularly, it offers an accessible resource for graduate students as well as statistical practitioners who have a basic knowledge of statistics. Last but not least, it is aimed at scientists with a genuine methodological interest in the above-mentioned reform debate.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 44721675
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020034538
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 44721675-n
Quantità: Più di 20 disponibili
Da: Rarewaves.com USA, London, LONDO, Regno Unito
Paperback. Condizione: New. 1st ed. 2022. Codice articolo LU-9783030990909
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783030990909
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783030990909_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783030990909
Quantità: 10 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 44721675-n
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 44721675
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a coherent description of foundational matters concerning statistical inference and shows how statistics can help us make inductive inferences about a broader context, based only on a limited dataset such as a random sample drawn from a larger population. By relating those basics to the methodological debate about inferential errors associated withp-values and statistical significance testing, readers are provided with a clear grasp of what statistical inference presupposes, and what it can and cannot do. To facilitate intuition, the representations throughout the book are as non-technical as possible.The central inspiration behind the text comes from the scientific debate about good statistical practices and the replication crisis. Calls for statistical reform include an unprecedented methodological warning from theAmerican Statistical Associationin 2016, a special issue 'Statistical Inference in the 21st Century:A World BeyondpThe American Statisticianin 2019, and a widely supported call to 'Retire statistical significance' inNaturein 2019.The book elucidates the probabilistic foundations and the potential of sample-based inferences, including random data generation, effect size estimation, and the assessment of estimation uncertainty caused by random error. Based on a thorough understanding of those basics, it then describes thep-value concept and the null-hypothesis-significance-testing ritual, and finally points out the ensuing inferential errors. This provides readers with the competence to avoid ill-guided statistical routines and misinterpretations of statistical quantities in the future.Intended for readers with an interest in understanding the role of statistical inference, the book provides a prudent assessment of the knowledge gain that can be obtained from a particular setof data under consideration of the uncertainty caused by random error. More particularly, it offers an accessible resource for graduate students as well as statistical practitioners who have a basic knowledge of statistics. Last but not least, it is aimed at scientists with a genuine methodological interest in the above-mentioned reform debate. 148 pp. Englisch. Codice articolo 9783030990909
Quantità: 2 disponibili