Articoli correlati a Adversarial Machine Learning: Attack Surfaces, Defence...

Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence - Brossura

 
9783030997731: Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence

Sinossi

A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways.  In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed.

We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantificationof the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications.

In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9783030997717: Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence

Edizione in evidenza

ISBN 10:  3030997715 ISBN 13:  9783030997717
Casa editrice: Springer-Nature New York Inc, 2023
Rilegato

Risultati della ricerca per Adversarial Machine Learning: Attack Surfaces, Defence...

Foto dell'editore

Aneesh Sreevallabh Chivukula, Sreevallabh Chivukula,Xinghao Yang, Yang,Bo Liu, Liu
Editore: Springer Nature B.V., 2023
ISBN 10: 3030997731 ISBN 13: 9783030997731
Nuovo PAP
Print on Demand

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9783030997731

Contatta il venditore

Compra nuovo

EUR 57,34
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Aneesh Sreevallabh Chivukula, Sreevallabh Chivukula,Xinghao Yang, Yang,Bo Liu, Liu
Editore: Springer Nature B.V., 2023
ISBN 10: 3030997731 ISBN 13: 9783030997731
Nuovo PAP
Print on Demand

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9783030997731

Contatta il venditore

Compra nuovo

EUR 54,54
Convertire valuta
Spese di spedizione: EUR 4,76
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Sreevallabh Chivukula, Aneesh; Yang, Xinghao; Liu, Bo
Editore: Springer, 2023
ISBN 10: 3030997731 ISBN 13: 9783030997731
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783030997731_new

Contatta il venditore

Compra nuovo

EUR 53,82
Convertire valuta
Spese di spedizione: EUR 13,72
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello