Combating neural degeneration from injury or disease is extremely difficult in the brain and spinal cord, i.e. central nervous system (CNS). Unlike the peripheral nerves, CNS neurons are bombarded by physical and chemical restrictions that prevent proper healing and restoration of function. The CNS is vital to bodily function, and loss of any part of it can severely and permanently alter a person's quality of life. Tissue engineering could offer much needed solutions to regenerate or replace damaged CNS tissue. This review will discuss current CNS tissue engineering approaches integrating scaffolds, cells and stimulation techniques. Hydrogels are commonly used CNS tissue engineering scaffolds to stimulate and enhance regeneration, but fiber meshes and other porous structures show specific utility depending on application. CNS relevant cell sources have focused on implantation of exogenous cells or stimulation of endogenous populations. Somatic cells of the CNS are rarely utilized for tissue engineering; however, glial cells of the peripheral nervous system (PNS) may be used to myelinate and protect spinal cord damage. Pluripotent and multipotent stem cells offer alternative cell sources due to continuing advancements in identification and differentiation of these cells. Finally, physical, chemical, and electrical guidance cues are extremely important to neural cells, serving important roles in development and adulthood. These guidance cues are being integrated into tissue engineering approaches. Of particular interest is the inclusion of cues to guide stem cells to differentiate into CNS cell types, as well to guide neuron targeting. This review should provide the reader with a broad understanding of CNS tissue engineering challenges and tactics, with the goal of fostering the future development of biologically inspired designs. Table of Contents: Introduction / Anatomy of the CNS and Progression of Neurological Damage / Biomaterials for Scaffold Preparation / Cell Sources for CNS TE / Stimulation and Guidance / Concluding Remarks
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Ashley E. Wilkinson is currently pursuing her PhD in Chemical and Biomolecular Engineering at the University of Akron (Akron, Ohio). She received her Bachelor of Science in Biomedical Engineering in 2010 from the University of Akron with a specialization in drug delivery and tissue engineering. During her undergraduate studies, Ashley participated in cooperative education at DePuy Orthopaedics as a product development engineer. Her current research interests include neuroregenerative strategies in the brain and spinal cord, specifically stem cell differentiation via specific chemical and mechanical stimulation.Nic D.Leipzig is the Iredell Chair Assistant Professor in Chemical and Biomolecular Engineering at the University of Akron (Akron, OH). He received a Bachelor of Engineering in Chemical Engineering from McGill University (Montreal, Quebec) in 2001 and a PhD in Bioengineering from Rice University (Houston, Texas) in 2006. During his PhD he studied the biomechanics of single chondrocytes, or cartilage cells, explored how growth factors change both the cytoskeleton and the material properties of chondrocytes,developed new methods for measuring gene expression in single cells and utilized these techniques to be the first to successfully demonstrate gene expression changes by mechanotransduction in single chondrocytes. He was a postdoctoral fellow at the University of Toronto (Toronto, Ontario) in the department of Chemical Engineering and Applied Chemistry from 2006 to 2009, where he developed hydrogel systems to enable precise control of the cell microenvironment, or niche, in order to guide the differentiation of adult stem cells. He has also revealed that substrate stiffness can influence neural stem cell proliferation and differentiation and demonstrated the advantages of covalently attaching growth factors for precisely guiding stem cell differentiation. Dr. Leipzig's current research is pioneering approaches for tissue engineering of the central nervous system utilizing engineered biomaterials, incorporating niche level stimuli and new stem cell sources.Aleesha M. McCormick obtained her Bachelor of Science at Kent State University (Kent, Ohio) in Integrated Science Education and taught high school chemistry and physics for two years. She is currently pursuing a PhD at the University of Akron (Akron, OH) in Chemical and Biomolecular Engineering. Her research area focuses on recombinant protein analysis and production for utilization in axon guidance and neural regenerative applications as well as examining potential cell sourcesfor neuronal differentiation.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 2,25 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 3,77 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiDa: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 44568258
Quantità: 1 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9783031014543
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 44568258-n
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020035223
Quantità: Più di 20 disponibili
Da: Rarewaves.com USA, London, LONDO, Regno Unito
Paperback. Condizione: New. 1°. Combating neural degeneration from injury or disease is extremely difficult in the brain and spinal cord, i.e. central nervous system (CNS). Unlike the peripheral nerves, CNS neurons are bombarded by physical and chemical restrictions that prevent proper healing and restoration of function. The CNS is vital to bodily function, and loss of any part of it can severely and permanently alter a person's quality of life. Tissue engineering could offer much needed solutions to regenerate or replace damaged CNS tissue. This review will discuss current CNS tissue engineering approaches integrating scaffolds, cells and stimulation techniques. Hydrogels are commonly used CNS tissue engineering scaffolds to stimulate and enhance regeneration, but fiber meshes and other porous structures show specific utility depending on application. CNS relevant cell sources have focused on implantation of exogenous cells or stimulation of endogenous populations. Somatic cells of the CNS are rarely utilized for tissue engineering; however, glial cells of the peripheral nervous system (PNS) may be used to myelinate and protect spinal cord damage. Pluripotent and multipotent stem cells offer alternative cell sources due to continuing advancements in identification and differentiation of these cells. Finally, physical, chemical, and electrical guidance cues are extremely important to neural cells, serving important roles in development and adulthood. These guidance cues are being integrated into tissue engineering approaches. Of particular interest is the inclusion of cues to guide stem cells to differentiate into CNS cell types, as well to guide neuron targeting. This review should provide the reader with a broad understanding of CNS tissue engineering challenges and tactics, with the goal of fostering the future development of biologically inspired designs.Table of Contents: Introduction / Anatomy of the CNS and Progression of Neurological Damage / Biomaterials for Scaffold Preparation / Cell Sources for CNS TE / Stimulation and Guidance / Concluding Remarks. Codice articolo LU-9783031014543
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In English. Codice articolo ria9783031014543_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 44568258-n
Quantità: 1 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783031014543
Quantità: 10 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 44568258
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Combating neural degeneration from injury or disease is extremely difficult in the brain and spinal cord, i.e. central nervous system (CNS). Unlike the peripheral nerves, CNS neurons are bombarded by physical and chemical restrictions that prevent proper healing and restoration of function. The CNS is vital to bodily function, and loss of any part of it can severely and permanently alter a person's quality of life. Tissue engineering could offer much needed solutions to regenerate or replace damaged CNS tissue. This review will discuss current CNS tissue engineering approaches integrating scaffolds, cells and stimulation techniques. Hydrogels are commonly used CNS tissue engineering scaffolds to stimulate and enhance regeneration, but fiber meshes and other porous structures show specific utility depending on application. CNS relevant cell sources have focused on implantation of exogenous cells or stimulation of endogenous populations. Somatic cells of the CNS are rarely utilized for tissue engineering; however, glial cells of the peripheral nervous system (PNS) may be used to myelinate and protect spinal cord damage. Pluripotent and multipotent stem cells offer alternative cell sources due to continuing advancements in identification and differentiation of these cells. Finally, physical, chemical, and electrical guidance cues are extremely important to neural cells, serving important roles in development and adulthood. These guidance cues are being integrated into tissue engineering approaches. Of particular interest is the inclusion of cues to guide stem cells to differentiate into CNS cell types, as well to guide neuron targeting. This review should provide the reader with a broad understanding of CNS tissue engineering challenges and tactics, with the goal of fostering the future development of biologically inspired designs.Table of Contents: Introduction / Anatomy of the CNS and Progression of Neurological Damage / Biomaterials for Scaffold Preparation / Cell Sources for CNS TE / Stimulation and Guidance / Concluding Remarks 124 pp. Englisch. Codice articolo 9783031014543
Quantità: 2 disponibili