Articoli correlati a Modern Statistics: A Computer-based Approach With Python

Modern Statistics: A Computer-based Approach With Python - Rilegato

 
9783031075650: Modern Statistics: A Computer-based Approach With Python

Sinossi

This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications.  Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail.  A custom Python package is available for download, allowing students to reproduce these examples and explore others.

The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning.

Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering.  Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. 

A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses.

The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/

"In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that."

Professor Fabrizio Ruggeri
Research Director at the National Research Council, Italy
President of the International Society for Business and Industrial Statistics (ISBIS)
Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI) 

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Professor Ron Kenett is Chairman of the KPA Group, Israel and Senior Research Fellow at the Samuel Neaman Institute, Technion, Haifa Israel and Professor, University of Turin, Italy. He is an applied statistician combining expertise in academic, consulting and business domains.


Shelemyahu Zacks is a Distinguished  Professor emeritus in the Mathematical Sciences department of Binghamton University.
He is a Fellow of the IMS, ASA, AAAS and an elected member of the ISI. Professor Zacks has published eleven books and more than 170 journal articles on subjects of design of experiments, statistical process control, statistical decision theory, sequential analysis, reliability and sampling from finite populations. Professor Zacks served as an Editor and Associate Editor of several Statistics and Probability journals.

Dr. Peter Gedeck, a Senior Data Scientist at Collaborative Drug Discovery, specializes in the development of machine learning algorithms to predict biological and physicochemical properties of drug candidates. In addition, he teaches data science at the University of Virginia and at statistics.com. 

Dalla quarta di copertina

This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications.  Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail.  A custom Python package is available for download, allowing students to reproduce these examples and explore others.

The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning.

Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering.  Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. 

A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses

The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/

"In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that."

Professor Fabrizio Ruggeri
Research Director at the National Research Council, Italy
President of the International Society for Business and Industrial Statistics (ISBIS)
Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI) 

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Zustand: Hervorragend | Seiten:...
Visualizza questo articolo

GRATIS per la spedizione da Germania a Italia

Destinazione, tempi e costi

GRATIS per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783031075681: Modern Statistics: A Computer-Based Approach with Python

Edizione in evidenza

ISBN 10:  3031075684 ISBN 13:  9783031075681
Casa editrice: Birkhäuser, 2023
Brossura

Risultati della ricerca per Modern Statistics: A Computer-based Approach With Python

Foto dell'editore

Ron S. Kenett, Peter Gedeck, Shelemyahu Zacks
ISBN 10: 303107565X ISBN 13: 9783031075650
Antico o usato Rilegato

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Hervorragend. Zustand: Hervorragend | Seiten: 464 | Sprache: Englisch | Produktart: Bücher. Codice articolo 40529413/1

Contatta il venditore

Compra usato

EUR 57,79
Convertire valuta
Spese di spedizione: GRATIS
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

0
Editore: Birkhäuser, 2022
ISBN 10: 303107565X ISBN 13: 9783031075650
Nuovo Rilegato

Da: Basi6 International, Irving, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-18385

Contatta il venditore

Compra nuovo

EUR 84,61
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Editore: Birkhäuser, 2022
ISBN 10: 303107565X ISBN 13: 9783031075650
Nuovo Rilegato

Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-31124

Contatta il venditore

Compra nuovo

EUR 84,61
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

KENETT, RON
Editore: Birkhäuser, 2022
ISBN 10: 303107565X ISBN 13: 9783031075650
Nuovo Rilegato

Da: Speedyhen, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: NEW. Codice articolo NW9783031075650

Contatta il venditore

Compra nuovo

EUR 82,16
Convertire valuta
Spese di spedizione: EUR 8,00
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Editore: Birkhäuser, 2022
ISBN 10: 303107565X ISBN 13: 9783031075650
Nuovo Rilegato

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 1st ed. 2022 edition NO-PA16APR2015-KAP. Codice articolo 26396293246

Contatta il venditore

Compra nuovo

EUR 88,26
Convertire valuta
Spese di spedizione: EUR 7,66
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Peter Gedeck
Editore: Birkhauser Verlag AG, 2022
ISBN 10: 303107565X ISBN 13: 9783031075650
Nuovo Rilegato

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9783031075650

Contatta il venditore

Compra nuovo

EUR 92,04
Convertire valuta
Spese di spedizione: EUR 6,32
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Peter Gedeck
Editore: Birkhauser Verlag AG, 2022
ISBN 10: 303107565X ISBN 13: 9783031075650
Nuovo Rilegato

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9783031075650

Contatta il venditore

Compra nuovo

EUR 99,03
Convertire valuta
Spese di spedizione: EUR 0,54
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Editore: Birkhäuser, 2022
ISBN 10: 303107565X ISBN 13: 9783031075650
Nuovo Rilegato

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 401165217

Contatta il venditore

Compra nuovo

EUR 90,62
Convertire valuta
Spese di spedizione: EUR 10,13
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Editore: Birkhäuser, 2022
ISBN 10: 303107565X ISBN 13: 9783031075650
Nuovo Rilegato

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 18396293236

Contatta il venditore

Compra nuovo

EUR 92,96
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Kenett, Ron; Zacks, Shelemyahu; Gedeck, Peter
Editore: Birkhäuser, 2022
ISBN 10: 303107565X ISBN 13: 9783031075650
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44603496-n

Contatta il venditore

Compra nuovo

EUR 89,43
Convertire valuta
Spese di spedizione: EUR 17,02
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 12 copie di questo libro

Vedi tutti i risultati per questo libro