Articoli correlati a Modern Statistics: A Computer-Based Approach with Python

Modern Statistics: A Computer-Based Approach with Python - Brossura

 
9783031075681: Modern Statistics: A Computer-Based Approach with Python

Sinossi

This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications.  Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail.  A custom Python package is available for download, allowing students to reproduce these examples and explore others.

The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning.

Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering.  Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. 

A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses.

The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/

"In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that."

Professor Fabrizio Ruggeri
Research Director at the National Research Council, Italy
President of the International Society for Business and Industrial Statistics (ISBIS)
Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI) 

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Professor Ron Kenett is Chairman of the KPA Group, Israel and Senior Research Fellow at the Samuel Neaman Institute, Technion, Haifa Israel and Professor, University of Turin, Italy. He is an applied statistician combining expertise in academic, consulting and business domains.


Shelemyahu Zacks is a Distinguished  Professor emeritus in the Mathematical Sciences department of Binghamton University.
He is a Fellow of the IMS, ASA, AAAS and an elected member of the ISI. Professor Zacks has published eleven books and more than 170 journal articles on subjects of design of experiments, statistical process control, statistical decision theory, sequential analysis, reliability and sampling from finite populations. Professor Zacks served as an Editor and Associate Editor of several Statistics and Probability journals.

Dr. Peter Gedeck, a Senior Data Scientist at Collaborative Drug Discovery, specializes in the development of machine learning algorithms to predict biological and physicochemical properties of drug candidates. In addition, he teaches data science at the University of Virginia and at statistics.com. 

Dalla quarta di copertina

This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications.  Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail.  A custom Python package is available for download, allowing students to reproduce these examples and explore others.

The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning.

Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering.  Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. 

A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses

The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/

"In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that."

Professor Fabrizio Ruggeri
Research Director at the National Research Council, Italy
President of the International Society for Business and Industrial Statistics (ISBIS)
Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI) 

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: buono
Visualizza questo articolo

EUR 12,39 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

GRATIS per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783031075650: Modern Statistics: A Computer-based Approach With Python

Edizione in evidenza

ISBN 10:  303107565X ISBN 13:  9783031075650
Casa editrice: Birkhauser, 2022
Rilegato

Risultati della ricerca per Modern Statistics: A Computer-Based Approach with Python

Foto dell'editore

0
Editore: Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuovo Brossura

Da: Basi6 International, Irving, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-347422

Contatta il venditore

Compra nuovo

EUR 68,15
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Kenett, Ron S.,Zacks, Shelemyahu,Gedeck, Peter
Editore: Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Antico o usato paperback

Da: Books From California, Simi Valley, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: Good. Codice articolo mon0003800685

Contatta il venditore

Compra usato

EUR 60,93
Convertire valuta
Spese di spedizione: EUR 12,39
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Editore: Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 464. Codice articolo 26398553075

Contatta il venditore

Compra nuovo

EUR 66,76
Convertire valuta
Spese di spedizione: EUR 7,69
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Editore: Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuovo Brossura

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 464. Codice articolo 397856812

Contatta il venditore

Compra nuovo

EUR 67,52
Convertire valuta
Spese di spedizione: EUR 10,22
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Editore: Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuovo Brossura

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 464. Codice articolo 18398553081

Contatta il venditore

Compra nuovo

EUR 70,08
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Editore: Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuovo Brossura

Da: ALLBOOKS1, Direk, SA, Australia

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Codice articolo SHUB347422

Contatta il venditore

Compra nuovo

EUR 80,80
Convertire valuta
Spese di spedizione: GRATIS
Da: Australia a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Ron S. Kenett|Shelemyahu Zacks|Peter Gedeck
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuovo Kartoniert / Broschiert
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Demonstrates how to incorporate Python into the modern statistics curriculum Includes over 40 case studies to facilitate experiential learningAn accompanying Python package is available for download, allowing students to engage directly wit. Codice articolo 1082981294

Contatta il venditore

Compra nuovo

EUR 72,89
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Editore: Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783031075681_new

Contatta il venditore

Compra nuovo

EUR 88,21
Convertire valuta
Spese di spedizione: EUR 10,39
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Ron S. Kenett
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 464 pp. Englisch. Codice articolo 9783031075681

Contatta il venditore

Compra nuovo

EUR 85,59
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Kenett, Ron S.
Editore: Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 46623970-n

Contatta il venditore

Compra nuovo

EUR 84,47
Convertire valuta
Spese di spedizione: EUR 17,08
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 8 copie di questo libro

Vedi tutti i risultati per questo libro