Articoli correlati a Mathematical Foundations of Data Science

Mathematical Foundations of Data Science - Rilegato

 
9783031190735: Mathematical Foundations of Data Science

Sinossi

This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring:  Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used? Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification.  Its primary focus is on principles crucial for application success.  

Topics and features:

  • Focuses on approaches supported by mathematical arguments, rather than sole computing experiences
  • Investigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from them
  • Considers key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithms
  • Examines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problem
  • Addresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrization
  • Investigates the mathematical principles involves with natural language processing and computer vision
  • Keeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire book

    Although this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations “beyond” the sole computing experience.

    Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

    Informazioni sull?autore

    Tomas Hrycej is a pioneer in the field of artificial intelligence and neural networks, having worked in this field since the 1980s. As an example of his pioneering deeds, he worked in the 1990s at Daimler Research on self-driving cars. In his doctoral thesis, he dealt with modular learning concepts in neural networks. His most important research stations were Daimler AG, Bosch GmbH, the University of Passau and currently the University of St. Gallen. He is the author of three monographs: Neurocontrol - Towards an Industrial Control Methodology, Modular Learning in Neural Networks (both Wiley-Interscience) and Robust Control ("Robuste Regelung", Springer), as well as about 60 publications in journals and conference proceedings.

    Bernhard Bermeitinger is a research assistant at the Chair of Data Science and Natural Language Processing and is currently working on his PhD in Deep Learning.
    Matthias Cetto is a visiting researcher at the Chair of Data Science and Natural Language Processing and conducts research in the field of Natural Language Processing.

    Siegfried Handschuh is a Full professor of Data Science and Natural Language Processing at the Institute of Computer Science at the University of St. Gallen, Switzerland. He received his PhD from the University of Karlsruhe (now: Karlsruhe Institute of Technology), Germany. His PhD thesis was in Collaboration with Stanford University as part of the American DARPA DAML project. Siegfried spend eight year in Ireland, where he led the Knowledge Discovery Unit at the Insight Centre for Data Analytics in Galway. He worked with multinational companies such as HP, SAP, IBM, Motorola and Elsevier Publishing. He also conducted research on the Digital Aristotle initiative, a project by Microsoft co-funder Paul Allen. He has published over 300 scientific papers and is highly cited with an h-index of 41 (according to Google Scholar). This makes him one of the top-ranked Computer Scientists in Switzerland.

    Dalla quarta di copertina

    Although it is widely recognized that analyzing large volumes of data by intelligent methods may provide highly valuable insights, the practical success of data science has led to the development of a sometimes confusing variety of methods, approaches and views. 

    This practical textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring:  Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used? Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification.  Its primary focus is on principles crucial for application success.  

    Topics and features:

    • Focuses on approaches supported by mathematical arguments, rather than sole computing experiences
    • Investigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from them
    • Considers key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithms
    • Examines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problem
    • Addresses the trade-off between model size and volume of data available for its identification and its consequences for model parameterization
    • Investigates the mathematical principles involved with natural language processing and computer vision
    • Keeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire book

    Although this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations “beyond” the sole computing experience.

    Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

    Compra usato

    Condizioni: buono
    Good condition ex-library book...
    Visualizza questo articolo

    GRATIS per la spedizione in U.S.A.

    Destinazione, tempi e costi

    Altre edizioni note dello stesso titolo

    9783031190766: Mathematical Foundations of Data Science

    Edizione in evidenza

    ISBN 10:  3031190769 ISBN 13:  9783031190766
    Casa editrice: Springer, 2024
    Brossura

    Risultati della ricerca per Mathematical Foundations of Data Science

    Foto dell'editore

    Hrycej, Tomas; Bermeitinger, Bernhard; Cetto, Matthias; Handschuh, Siegfried
    Editore: Springer, 2023
    ISBN 10: 3031190734 ISBN 13: 9783031190735
    Antico o usato Rilegato

    Da: SecondSale, Montgomery, IL, U.S.A.

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Condizione: Good. Good condition ex-library book with usual library markings and stickers. Codice articolo 00089403152

    Contatta il venditore

    Compra usato

    EUR 63,56
    Convertire valuta
    Spese di spedizione: GRATIS
    In U.S.A.
    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Foto dell'editore

    Hrycej
    Editore: Springer, 2023
    ISBN 10: 3031190734 ISBN 13: 9783031190735
    Nuovo Rilegato

    Da: Basi6 International, Irving, TX, U.S.A.

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-261209

    Contatta il venditore

    Compra nuovo

    EUR 71,44
    Convertire valuta
    Spese di spedizione: GRATIS
    In U.S.A.
    Destinazione, tempi e costi

    Quantità: 2 disponibili

    Aggiungi al carrello

    Foto dell'editore

    Tomas Hrycej
    Editore: Springer, 2023
    ISBN 10: 3031190734 ISBN 13: 9783031190735
    Nuovo Rilegato

    Da: Books Puddle, New York, NY, U.S.A.

    Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Condizione: New. 1st Edition. Codice articolo 26396295637

    Contatta il venditore

    Compra nuovo

    EUR 69,88
    Convertire valuta
    Spese di spedizione: EUR 3,42
    In U.S.A.
    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Foto dell'editore

    0
    Editore: Springer, 2023
    ISBN 10: 3031190734 ISBN 13: 9783031190735
    Nuovo Rilegato

    Da: Basi6 International, Irving, TX, U.S.A.

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-14009

    Contatta il venditore

    Compra nuovo

    EUR 75,87
    Convertire valuta
    Spese di spedizione: GRATIS
    In U.S.A.
    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Foto dell'editore

    Hrycej Tomas
    Editore: Springer, 2023
    ISBN 10: 3031190734 ISBN 13: 9783031190735
    Nuovo Rilegato

    Da: Majestic Books, Hounslow, Regno Unito

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Condizione: New. Codice articolo 401162762

    Contatta il venditore

    Compra nuovo

    EUR 70,72
    Convertire valuta
    Spese di spedizione: EUR 7,49
    Da: Regno Unito a: U.S.A.
    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Foto dell'editore

    Handschuh, Siegfried
    ISBN 10: 3031190734 ISBN 13: 9783031190735
    Nuovo Rilegato

    Da: TextbookRush, Grandview Heights, OH, U.S.A.

    Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Condizione: Brand New. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. Codice articolo 52498145

    Contatta il venditore

    Compra nuovo

    EUR 79,73
    Convertire valuta
    Spese di spedizione: EUR 3,42
    In U.S.A.
    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Foto dell'editore

    Hrycej Tomas
    Editore: Springer, 2023
    ISBN 10: 3031190734 ISBN 13: 9783031190735
    Nuovo Rilegato

    Da: Biblios, Frankfurt am main, HESSE, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Condizione: New. Codice articolo 18396295647

    Contatta il venditore

    Compra nuovo

    EUR 73,25
    Convertire valuta
    Spese di spedizione: EUR 9,95
    Da: Germania a: U.S.A.
    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Foto dell'editore

    Bernhard Bermeitinger
    ISBN 10: 3031190734 ISBN 13: 9783031190735
    Nuovo Rilegato

    Da: PBShop.store UK, Fairford, GLOS, Regno Unito

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo S0-9783031190735

    Contatta il venditore

    Compra nuovo

    EUR 81,07
    Convertire valuta
    Spese di spedizione: EUR 5,79
    Da: Regno Unito a: U.S.A.
    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Foto dell'editore

    Siegfried Handschuh
    ISBN 10: 3031190734 ISBN 13: 9783031190735
    Nuovo Rilegato

    Da: Grand Eagle Retail, Mason, OH, U.S.A.

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Hardcover. Condizione: new. Hardcover. This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used? Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success. Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations beyond the sole computing experience. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783031190735

    Contatta il venditore

    Compra nuovo

    EUR 92,26
    Convertire valuta
    Spese di spedizione: GRATIS
    In U.S.A.
    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Immagini fornite dal venditore

    Tomas Hrycej
    ISBN 10: 3031190734 ISBN 13: 9783031190735
    Nuovo Rilegato
    Print on Demand

    Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations 'beyond' the sole computing experience. 228 pp. Englisch. Codice articolo 9783031190735

    Contatta il venditore

    Compra nuovo

    EUR 90,94
    Convertire valuta
    Spese di spedizione: EUR 23,00
    Da: Germania a: U.S.A.
    Destinazione, tempi e costi

    Quantità: 2 disponibili

    Aggiungi al carrello

    Vedi altre 5 copie di questo libro

    Vedi tutti i risultati per questo libro