Elliptic Integrals and Elliptic Functions: 9 - Rilegato

Takebe, Takashi

 
9783031302640: Elliptic Integrals and Elliptic Functions: 9

Sinossi

This book gives a comprehensive introduction to those parts of the theory of elliptic integrals and elliptic functions which provide illuminating examples in complex analysis, but which are not often covered in regular university courses. These examples form prototypes of major ideas in modern mathematics and were a driving force of the subject in the eighteenth and nineteenth centuries. In addition to giving an account of the main topics of the theory, the book also describes many applications, both in mathematics and in physics. For the reader’s convenience, all necessary preliminaries on basic notions such as Riemann surfaces are explained to a level sufficient to read the book.

For each notion a clear motivation is given for its study, answering the question ‘Why do we consider such objects?’, and the theory is developed in a natural way that mirrors its historical development (e.g., ‘If there is such and such an object, then you would surely expect this one’). This feature sets this text apart from other books on the same theme, which are usually presented in a different order. Throughout, the concepts are augmented and clarified by numerous illustrations.

Suitable for undergraduate and graduate students of mathematics, the book will also be of interest to researchers who are not familiar with elliptic functions and integrals, as well as math enthusiasts.


Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Takashi TAKEBE is a professor at the Faculty of Mathematics, National Research University Higher School of Economics, Moscow. He studies integrable systems in mathematical physics, especially integrable nonlinear differential equations, their connection with complex analysis and solvable lattice models in statistical mechanics related to elliptic R-matrices.

Dalla quarta di copertina

This book gives a comprehensive introduction to those parts of the theory of elliptic integrals and elliptic functions which provide illuminating examples in complex analysis, but which are not often covered in regular university courses. These examples form prototypes of major ideas in modern mathematics and were a driving force of the subject in the eighteenth and nineteenth centuries. In addition to giving an account of the main topics of the theory, the book also describes many applications, both in mathematics and in physics. For the reader’s convenience, all necessary preliminaries on basic notions such as Riemann surfaces are explained to a level sufficient to read the book.

For each notion a clear motivation is given for its study, answering the question ‘Why do we consider such objects?’, and the theory is developed in a natural way that mirrors its historical development (e.g., ‘If there is such and such an object, then you would surely expect this one’). This feature sets this text apart from other books on the same theme, which are usually presented in a different order. Throughout, the concepts are augmented and clarified by numerous illustrations.

Suitable for undergraduate and graduate students of mathematics, the book will also be of interest to researchers who are not familiar with elliptic functions and integrals, as well as math enthusiasts.



 

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9783031302664: Elliptic Integrals and Elliptic Functions

Edizione in evidenza

ISBN 10:  3031302664 ISBN 13:  9783031302664
Casa editrice: Springer, 2023
Brossura