Articoli correlati a Functions of Least Gradient: 110

Functions of Least Gradient: 110 - Rilegato

 
9783031518805: Functions of Least Gradient: 110

Sinossi

This book is devoted to the least gradient problem and its variants. The least gradient problem concerns minimization of the total variation of a function with prescribed values on the boundary of a Lipschitz domain. It is the model problem for studying minimization problems involving functionals with linear growth. Functions which solve the least gradient problem for their own boundary data, which arise naturally in the study of minimal surfaces, are called functions of least gradient.

The main part of the book is dedicated to presenting the recent advances in this theory. Among others are presented an Euler–Lagrange characterization of least gradient functions, an anisotropic counterpart of the least gradient problem motivated by an inverse problem in medical imaging, and state-of-the-art results concerning existence, regularity, and structure of solutions. Moreover, the authors present a surprising connection between the least gradient problem and the Monge–Kantorovich optimal transport problem and some of its consequences, and discuss formulations of the least gradient problem in the nonlocal and metric settings. Each chapter is followed by a discussion section concerning other research directions, generalizations of presented results, and presentation of some open problems.

The book is intended as an introduction to the theory of least gradient functions and a reference tool for a general audience in analysis and PDEs. The readers are assumed to have a basic understanding of functional analysis and partial differential equations. Apart from this, the text is self-contained, and the book ends with five appendices on functions of bounded variation, geometric measure theory, convex analysis, optimal transport, and analysis in metric spaces.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Wojciech Górny graduated from the University of Warsaw. Currently, he is a senior postdoc at the University of Vienna. He works primarily in calculus of variations, functional analysis, and partial differential equations.


José M. Mazón is a professor emeritus of the Department of Mathematical Analysis at the University of Valencia. His main field of research are nonlinear partial differential equations.

Dalla quarta di copertina

This book is devoted to the least gradient problem and its variants. The least gradient problem concerns minimization of the total variation of a function with prescribed values on the boundary of a Lipschitz domain. It is the model problem for studying minimization problems involving functionals with linear growth. Functions which solve the least gradient problem for their own boundary data, which arise naturally in the study of minimal surfaces, are called functions of least gradient.


The main part of the book is dedicated to presenting the recent advances in this theory. Among others are presented an Euler–Lagrange characterization of least gradient functions, an anisotropic counterpart of the least gradient problem motivated by an inverse problem in medical imaging, and state-of-the-art results concerning existence, regularity, and structure of solutions. Moreover, the authors present a surprising connection between the least gradient problem and the Monge–Kantorovich optimal transport problem and some of its consequences, and discuss formulations of the least gradient problem in the nonlocal and metric settings. Each chapter is followed by a discussion section concerning other research directions, generalizations of presented results, and presentation of some open problems.

The book is intended as an introduction to the theory of least gradient functions and a reference tool for a general audience in analysis and PDEs. The readers are assumed to have a basic understanding of functional analysis and partial differential equations. Apart from this, the text is self-contained, and the book ends with five appendices on functions of bounded variation, geometric measure theory, convex analysis, optimal transport, and analysis in metric spaces.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Functions of Least Gradient: 110

Immagini fornite dal venditore

Wojciech Górny|José M. Mazón
ISBN 10: 3031518802 ISBN 13: 9783031518805
Nuovo Rilegato

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 1276622257

Contatta il venditore

Compra nuovo

EUR 144,94
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Górny, Wojciech; Mazón, José M.
Editore: Birkhäuser, 2024
ISBN 10: 3031518802 ISBN 13: 9783031518805
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783031518805_new

Contatta il venditore

Compra nuovo

EUR 150,34
Convertire valuta
Spese di spedizione: EUR 10,36
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

José M. Mazón
ISBN 10: 3031518802 ISBN 13: 9783031518805
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is devoted to the least gradient problem and its variants. The least gradient problem concerns minimization of the total variation of a function with prescribed values on the boundary of a Lipschitz domain. It is the model problem for studying minimization problems involving functionals with linear growth. Functions which solve the least gradient problem for their own boundary data, which arise naturally in the study of minimal surfaces, are called functions of least gradient.The main part of the book is dedicated to presenting the recent advances in this theory. Among others are presented an Euler-Lagrange characterization of least gradient functions, an anisotropic counterpart of the least gradient problem motivated by an inverse problem in medical imaging, and state-of-the-art results concerning existence, regularity, and structure of solutions. Moreover, the authors present a surprising connection between the least gradient problem and the Monge-Kantorovich optimal transport problem and some of its consequences, and discuss formulations of the least gradient problem in the nonlocal and metric settings. Each chapter is followed by a discussion section concerning other research directions, generalizations of presented results, and presentation of some open problems.The book is intended as an introduction to the theory of least gradient functions and a reference tool for a general audience in analysis and PDEs. The readers are assumed to have a basic understanding of functional analysis and partial differential equations. Apart from this, the text is self-contained, and the book ends with five appendices on functions of bounded variation, geometric measure theory, convex analysis, optimal transport, and analysis in metric spaces. 456 pp. Englisch. Codice articolo 9783031518805

Contatta il venditore

Compra nuovo

EUR 171,19
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Górny, Wojciech; Mazón, José M.
Editore: Birkhäuser, 2024
ISBN 10: 3031518802 ISBN 13: 9783031518805
Nuovo Rilegato

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783031518805

Contatta il venditore

Compra nuovo

EUR 157,88
Convertire valuta
Spese di spedizione: EUR 25,71
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

José M. Mazón
ISBN 10: 3031518802 ISBN 13: 9783031518805
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is devoted to the least gradient problem and its variants. The least gradient problem concerns minimization of the total variation of a function with prescribed values on the boundary of a Lipschitz domain. It is the model problem for studying minimization problems involving functionals with linear growth. Functions which solve the least gradient problem for their own boundary data, which arise naturally in the study of minimal surfaces, are called functions of least gradient.The main part of the book is dedicated to presenting the recent advances in this theory. Among others are presented an Euler-Lagrange characterization of least gradient functions, an anisotropic counterpart of the least gradient problem motivated by an inverse problem in medical imaging, and state-of-the-art results concerning existence, regularity, and structure of solutions. Moreover, the authors present a surprising connection between the least gradient problem and the Monge-Kantorovich optimal transport problem and some of its consequences, and discuss formulations of the least gradient problem in the nonlocal and metric settings. Each chapter is followed by a discussion section concerning other research directions, generalizations of presented results, and presentation of some open problems.The book is intended as an introduction to the theory of least gradient functions and a reference tool for a general audience in analysis and PDEs. The readers are assumed to have a basic understanding of functional analysis and partial differential equations. Apart from this, the text is self-contained, and the book ends with five appendices on functions of bounded variation, geometric measure theory, convex analysis, optimal transport, and analysis in metric spaces. Codice articolo 9783031518805

Contatta il venditore

Compra nuovo

EUR 171,19
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

José M. Mazón
ISBN 10: 3031518802 ISBN 13: 9783031518805
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This book is devoted to the least gradient problem and its variants. The least gradient problem concerns minimization of the total variation of a function with prescribed values on the boundary of a Lipschitz domain. It is the model problem for studying minimization problems involving functionals with linear growth. Functions which solve the least gradient problem for their own boundary data, which arise naturally in the study of minimal surfaces, are called functions of least gradient.The main part of the book is dedicated to presenting the recent advances in this theory. Among others are presented an Euler¿Lagrange characterization of least gradient functions, an anisotropic counterpart of the least gradient problem motivated by an inverse problem in medical imaging, and state-of-the-art results concerning existence, regularity, and structure of solutions. Moreover, the authors present a surprising connection between the least gradient problem and the Monge¿Kantorovich optimal transport problem and some of its consequences, and discuss formulations of the least gradient problem in the nonlocal and metric settings. Each chapter is followed by a discussion section concerning other research directions, generalizations of presented results, and presentation of some open problems.The book is intended as an introduction to the theory of least gradient functions and a reference tool for a general audience in analysis and PDEs. The readers are assumed to have a basic understanding of functional analysis and partial differential equations. Apart from this, the text is self-contained, and the book ends with five appendices on functions of bounded variation, geometric measure theory, convex analysis, optimal transport, and analysis in metric spaces.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 456 pp. Englisch. Codice articolo 9783031518805

Contatta il venditore

Compra nuovo

EUR 171,19
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Górny, Wojciech; Mazón, José M.
Editore: Birkhäuser, 2024
ISBN 10: 3031518802 ISBN 13: 9783031518805
Nuovo Rilegato

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9783031518805

Contatta il venditore

Compra nuovo

EUR 188,14
Convertire valuta
Spese di spedizione: EUR 7,72
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Wojciech Gorny
ISBN 10: 3031518802 ISBN 13: 9783031518805
Nuovo Rilegato

Da: CitiRetail, Stevenage, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. This book is devoted to the least gradient problem and its variants. The least gradient problem concerns minimization of the total variation of a function with prescribed values on the boundary of a Lipschitz domain. It is the model problem for studying minimization problems involving functionals with linear growth. Functions which solve the least gradient problem for their own boundary data, which arise naturally in the study of minimal surfaces, are called functions of least gradient.The main part of the book is dedicated to presenting the recent advances in this theory. Among others are presented an EulerLagrange characterization of least gradient functions, an anisotropic counterpart of the least gradient problem motivated by an inverse problem in medical imaging, and state-of-the-art results concerning existence, regularity, and structure of solutions. Moreover, the authors present a surprising connection between the least gradient problem and the MongeKantorovich optimal transport problem and some of its consequences, and discuss formulations of the least gradient problem in the nonlocal and metric settings. Each chapter is followed by a discussion section concerning other research directions, generalizations of presented results, and presentation of some open problems.The book is intended as an introduction to the theory of least gradient functions and a reference tool for a general audience in analysis and PDEs. The readers are assumed to have a basic understanding of functional analysis and partial differential equations. Apart from this, the text is self-contained, and the book ends with five appendices on functions of bounded variation, geometric measure theory, convex analysis, optimal transport, and analysis in metric spaces. Moreover, the authors present a surprising connection between the least gradient problem and the MongeKantorovich optimal transport problem and some of its consequences, and discuss formulations of the least gradient problem in the nonlocal and metric settings. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9783031518805

Contatta il venditore

Compra nuovo

EUR 164,42
Convertire valuta
Spese di spedizione: EUR 34,58
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Górny, Wojciech; Mazón, José M.
Editore: Birkhäuser, 2024
ISBN 10: 3031518802 ISBN 13: 9783031518805
Nuovo Rilegato

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 2024th edition NO-PA16APR2015-KAP. Codice articolo 26399311940

Contatta il venditore

Compra nuovo

EUR 228,03
Convertire valuta
Spese di spedizione: EUR 7,72
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Górny, Wojciech; Mazón, José M.
Editore: Birkhäuser, 2024
ISBN 10: 3031518802 ISBN 13: 9783031518805
Nuovo Rilegato
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 398113691

Contatta il venditore

Compra nuovo

EUR 239,22
Convertire valuta
Spese di spedizione: EUR 10,20
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Vedi altre 2 copie di questo libro

Vedi tutti i risultati per questo libro