This book is devoted to the least gradient problem and its variants. The least gradient problem concerns minimization of the total variation of a function with prescribed values on the boundary of a Lipschitz domain. It is the model problem for studying minimization problems involving functionals with linear growth. Functions which solve the least gradient problem for their own boundary data, which arise naturally in the study of minimal surfaces, are called functions of least gradient.
The main part of the book is dedicated to presenting the recent advances in this theory. Among others are presented an Euler–Lagrange characterization of least gradient functions, an anisotropic counterpart of the least gradient problem motivated by an inverse problem in medical imaging, and state-of-the-art results concerning existence, regularity, and structure of solutions. Moreover, the authors present a surprising connection between the least gradient problem and the Monge–Kantorovich optimal transport problem and some of its consequences, and discuss formulations of the least gradient problem in the nonlocal and metric settings. Each chapter is followed by a discussion section concerning other research directions, generalizations of presented results, and presentation of some open problems.
The book is intended as an introduction to the theory of least gradient functions and a reference tool for a general audience in analysis and PDEs. The readers are assumed to have a basic understanding of functional analysis and partial differential equations. Apart from this, the text is self-contained, and the book ends with five appendices on functions of bounded variation, geometric measure theory, convex analysis, optimal transport, and analysis in metric spaces.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Wojciech Górny graduated from the University of Warsaw. Currently, he is a senior postdoc at the University of Vienna. He works primarily in calculus of variations, functional analysis, and partial differential equations.
This book is devoted to the least gradient problem and its variants. The least gradient problem concerns minimization of the total variation of a function with prescribed values on the boundary of a Lipschitz domain. It is the model problem for studying minimization problems involving functionals with linear growth. Functions which solve the least gradient problem for their own boundary data, which arise naturally in the study of minimal surfaces, are called functions of least gradient.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo č un articolo print on demand. Codice articolo 1ZIW3NILVJ
Quantitą: Pił di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 456 pp. Englisch. Codice articolo 9783031518836
Quantitą: 2 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Functions of Least Gradient | Wojciech Górny (u. a.) | Taschenbuch | xxviii | Englisch | 2025 | Springer | EAN 9783031518836 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 133788881
Quantitą: 5 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware Springer Nature c/o IBS, Benzstrasse 21, 48619 Heek 456 pp. Englisch. Codice articolo 9783031518836
Quantitą: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering. Codice articolo 9783031518836
Quantitą: 1 disponibili