Articoli correlati a Validity, Reliability, and Significance: Empirical...

Validity, Reliability, and Significance: Empirical Methods for Nlp and Data Science: Empirical Methods for Nlp and Data Science - Rilegato

 
9783031570643: Validity, Reliability, and Significance: Empirical Methods for Nlp and Data Science: Empirical Methods for Nlp and Data Science

Sinossi

This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science.  The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data.  The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments. The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Stefan Riezler is a full professor in the Department of Computational Linguistics at Heidelberg University, Germany since 2010, and also co-opted in Informatics at the Department of Mathematics and Computer Science. He received his Ph.D. (with distinction) in Computational Linguistics from the University of Tübingen in 1998, conducted post-doctoral work at Brown University in 1999, and spent a decade in industry research (Xerox PARC, Google Research). His research focus is on inter-active machine learning for natural language processing problems especially for the application areas of cross-lingual information retrieval and statistical machine trans-lation. He is engaged as an editorial board member of the main journals of the field—Computational Linguistics and Transactions of the Association for Computational Linguistics—and is a regular member of the program committee of various natural language processing and machine learning conferences.He has published more than 100 journal and conference papers in these areas. He also conducts interdisciplinary research as member of the Interdisciplinary Center for Scientific Computing (IWR), for example, on the topic of early prediction of sepsis using machine learning and natural language processing techniques.

Michael Hagmann is a graduate research assistant in the Department of Computational Linguistics at Heidelberg University, Germany, since 2019. He received an M.Sc. in Statistics (with distinction) from the University of Vienna, Austria in 2016, and a Ph.D. in Computational Linguistics from Heidelberg University in 2023. He received an award for the best Master’s thesis in Applied Statistics from the Austrian Statistical Society. He has worked as a medical statistician at the medical faculty of Heidelberg University in Mannheim, Germany and in the section for Medical Statistics at the Medical University of Vienna, Austria. His research focus is on statistical methods for data science and, recently, NLP. He has published more than 50 papers in journals for medical research and mathematical statistics.

Dalla quarta di copertina

This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science.  The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data.  The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments. The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer-Nature New York Inc
  • Data di pubblicazione2024
  • ISBN 10 3031570642
  • ISBN 13 9783031570643
  • RilegaturaCopertina rigida
  • LinguaInglese
  • Numero edizione2
  • Numero di pagine188
  • Contatto del produttorenon disponibile

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Validity, Reliability, and Significance: Empirical...

Immagini fornite dal venditore

Riezler, Stefan|Hagmann, Michael
ISBN 10: 3031570642 ISBN 13: 9783031570643
Nuovo Rilegato

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 1407956899

Contatta il venditore

Compra nuovo

EUR 38,69
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Stefan Riezler
ISBN 10: 3031570642 ISBN 13: 9783031570643
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data. The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments.The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications. 168 pp. Englisch. Codice articolo 9783031570643

Contatta il venditore

Compra nuovo

EUR 42,79
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Michael Hagmann
ISBN 10: 3031570642 ISBN 13: 9783031570643
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data. The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments.The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications. Codice articolo 9783031570643

Contatta il venditore

Compra nuovo

EUR 42,79
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Michael Hagmann
ISBN 10: 3031570642 ISBN 13: 9783031570643
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data. The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments. The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 188 pp. Englisch. Codice articolo 9783031570643

Contatta il venditore

Compra nuovo

EUR 42,79
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Riezler, Stefan; Hagmann, Michael
Editore: Springer, 2024
ISBN 10: 3031570642 ISBN 13: 9783031570643
Nuovo Rilegato

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Second Edition 2024 NO-PA16APR2015-KAP. Codice articolo 26402088111

Contatta il venditore

Compra nuovo

EUR 62,55
Convertire valuta
Spese di spedizione: EUR 7,89
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Riezler, Stefan; Hagmann, Michael
Editore: Springer, 2024
ISBN 10: 3031570642 ISBN 13: 9783031570643
Nuovo Rilegato
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 394321776

Contatta il venditore

Compra nuovo

EUR 62,02
Convertire valuta
Spese di spedizione: EUR 10,50
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Riezler, Stefan; Hagmann, Michael
Editore: Springer, 2024
ISBN 10: 3031570642 ISBN 13: 9783031570643
Nuovo Rilegato
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND. Codice articolo 18402088101

Contatta il venditore

Compra nuovo

EUR 64,75
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Riezler, Stefan/ Hagmann, Michael
ISBN 10: 3031570642 ISBN 13: 9783031570643
Nuovo Rilegato

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Brand New. 2nd edition. 185 pages. 9.44x6.61x9.69 inches. In Stock. Codice articolo x-3031570642

Contatta il venditore

Compra nuovo

EUR 68,68
Convertire valuta
Spese di spedizione: EUR 11,87
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Stefan Riezler
ISBN 10: 3031570642 ISBN 13: 9783031570643
Nuovo Rilegato

Da: Grand Eagle Retail, Fairfield, OH, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data. The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments. The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783031570643

Contatta il venditore

Compra nuovo

EUR 57,01
Convertire valuta
Spese di spedizione: EUR 65,75
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello