This book provides a comprehensive overview of reinforcement learning for ridesharing applications. The authors first lay out the fundamentals of the ridesharing system architectures and review the basics of reinforcement learning, including the major applicable algorithms. The book describes the research problems associated with the various aspects of a ridesharing system and discusses the existing reinforcement learning approaches for solving them. The authors survey the existing research on each problem, and then examine specific case studies. The book also includes a review of two of methods closely related to reinforcement learning: approximate dynamic programming and model-predictive control.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Zhiwei (Tony) Qin, Ph.D., is a Principal Scientist at Lyft Rideshare Labs. He earned his Ph.D. from Columbia University. His research interests include operations research, machine learning, deep learning, and big data analytics, with applications in smart transportation and E-commerce.
Xiaocheng Tang, Ph.D., is an AI Research Scientist at Meta. He earned his Ph.D. from Lehigh University. His research interests lie at the intersection of machine learning, reinforcement learning, and optimization.
Qingyang Li, Ph.D., is a Senior Engineering Manager at DiDi Autonomous Driving. He earned his Ph.D. from Arizona State University. His research interests include machine learning, deep learning, reinforcement learning, and computer vision.
Jieping Ye, Ph.D. is affiliated with the Alibaba Group. He earned his Ph.D. from the University of Minnesota. His research interests include machine learning, data mining, artificial intelligence, transportation, and biomedical informatics.
Hongtu Zhu, Ph.D. is a Professor in the Department of Biostatics at The University of North Carolina at Chapel Hill. He earned his Ph.D. at The Chinese University of Hong Kong. His research interests include medical imaging analysis, imaging genetics, artificial intelligence, statistics, biostatics, and computational neuroscience.
This book provides a comprehensive overview of reinforcement learning for ridesharing applications. The authors first lay out the fundamentals of the ridesharing system architectures and review the basics of reinforcement learning, including the major applicable algorithms. The book describes the research problems associated with the various aspects of a ridesharing system and discusses the existing reinforcement learning approaches for solving them. The authors survey the existing research on each problem, and then examine specific case studies. The book also includes a review of two of methods closely related to reinforcement learning: approximate dynamic programming and model-predictive control.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 5,50 per la spedizione da Italia a U.S.A.
Destinazione, tempi e costiDa: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo UCVOSYKUOW
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26404719720
Quantità: 4 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a comprehensive overview of reinforcement learning for ridesharing applications. The authors first lay out the fundamentals of the ridesharing system architectures and review the basics of reinforcement learning, including the major applicable algorithms. The book describes the research problems associated with the various aspects of a ridesharing system and discusses the existing reinforcement learning approaches for solving them. The authors survey the existing research on each problem, and then examine specific case studies. The book also includes a review of two of methods closely related to reinforcement learning: approximate dynamic programming and model-predictive control. 144 pp. Englisch. Codice articolo 9783031596421
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 409483191
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18404719714
Quantità: 4 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book provides a comprehensive overview of reinforcement learning for ridesharing applications. The authors first lay out the fundamentals of the ridesharing system architectures and review the basics of reinforcement learning, including the major applicable algorithms. The book describes the research problems associated with the various aspects of a ridesharing system and discusses the existing reinforcement learning approaches for solving them. The authors survey the existing research on each problem, and then examine specific case studies. The book also includes a review of two of methods closely related to reinforcement learning: approximate dynamic programming and model-predictive control.Springer-Verlag KG, Sachsenplatz 4-6, 1201 Wien 144 pp. Englisch. Codice articolo 9783031596421
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a comprehensive overview of reinforcement learning for ridesharing applications. The authors first lay out the fundamentals of the ridesharing system architectures and review the basics of reinforcement learning, including the major applicable algorithms. The book describes the research problems associated with the various aspects of a ridesharing system and discusses the existing reinforcement learning approaches for solving them. The authors survey the existing research on each problem, and then examine specific case studies. The book also includes a review of two of methods closely related to reinforcement learning: approximate dynamic programming and model-predictive control. Codice articolo 9783031596421
Quantità: 1 disponibili