In general, nanofluid is suspension of nanometer-sized particle in base fluids such as water, oil, ethylene glycol mixture etc. Nanofluid has more thermal conductivity compared to the base fluids. As such, the nanofluid has more heat transfer capacity than the base fluids. In order to study nanofluid flow problems, we need to solve related nonlinear differential equations analytically or numerically. But in most cases, we may not get an analytical solution. Accordingly, the related nonlinear differential equations need to be solved by efficient numerical methods.
Accordingly, this book addresses various challenging problems related to nanofluid flow. In this regard, different efficient numerical methods such as homotopy perturbation method, Galerkin's method, and least square method are included. Further, the above practical problems are validated in special cases. We believe that this book will be very beneficial for readers who want firsthand knowledge on how to solve nanofluid flow problems.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Dr. Snehashish Chakraverty works in the Department of Mathematics (Applied Mathematics Group), National Institute of Technology Rourkela, Odisha, as a Senior (Higher Administrative Grade) Professor and is also the Dean of Student Welfare of the institute since November 2019. He received his Ph.D. from IIT Roorkee in 1992. Then he did post-doctoral research at ISVR, University of Southampton, U.K., and at Concordia University, Canada. He was a visiting professor at Concordia and McGill Universities, Canada, and University of Johannesburg, South Africa. Prof. Chakraverty has authored 17 books and published approximately 345 research papers in journals and conferences. He was the President of the Section of Mathematical Sciences (including Statistics) of Indian Science Congress (2015-2016) and was the Vice President—Orissa Mathematical Society (2011-2013). Prof. Chakraverty is a recipient of prestigious awards viz. INSA International Bilateral Exchange Program, Platinum Jubilee ISCA Lecture, CSIR Young Scientist, BOYSCAST, UCOST Young Scientist, Golden Jubilee CBRI Director's Award, Roorkee University gold Medals and more. He has undertaken17 research projects as Principal Investigator funded by different agencies totaling about Rs.1.6 crores. Prof. Chakraverty is the Chief Editor of International Journal of Fuzzy Computation and Modelling (IJFCM), Inderscience Publisher, Switzerland, Associate Editor of Computational Methods in Structural Engineering, Frontiers in Built Environment, and an Editorial Board member of Springer Nature Applied Sciences, IGI Research Insights Books, Springer Book Series of Modeling and Optimization in Science andTechnologies, Coupled Systems Mechanics (Techno Press), Curved and Layered Structures (De Gruyter), Journal of Composites Science (MDPI), Engineering Research Express (IOP), Applications and Applied Mathematics: An International Journal, and Computational Engineering and Physical Modeling (Pouyan Press). His present research area includes Differential Equations (Ordinary, Partial, and Fractional), Numerical Analysis and Computational Methods, Structural Dynamics (FGM, Nano), and Fluid Dynamics, Mathematical Modeling and Uncertainty Modeling, and Soft Computing and Machine Intelligence (Artificial Neural Network, Fuzzy, Interval and Affine Computations).
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dr. Snehashish Chakraverty works in the Department of Mathematics (Applied Mathematics Group), National Institute of Technology Rourkela, Odisha, as a Senior (Higher Administrative Grade) Professor and is also the Dean of Student Welfare of the institute si. Codice articolo 608129974
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In general, nanofluid is suspension of nanometer-sized particle in base fluids such as water, oil, ethylene glycol mixture etc. Nanofluid has more thermal conductivity compared to the base fluids. As such, the nanofluid has more heat transfer capacity than the base fluids. In order to study nanofluid flow problems, we need to solve related nonlinear differential equations analytically or numerically. But in most cases, we may not get an analytical solution. Accordingly, the related nonlinear differential equations need to be solved by efficient numerical methods.Accordingly, this book addresses various challenging problems related to nanofluid flow. In this regard, different efficient numerical methods such as homotopy perturbation method, Galerkin's method, and least square method are included. Further, the above practical problems are validated in special cases. We believe that this book will be very beneficial for readers who want firsthand knowledge on how to solve nanofluid flow problems. 92 pp. Englisch. Codice articolo 9783031796562
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - In general, nanofluid is suspension of nanometer-sized particle in base fluids such as water, oil, ethylene glycol mixture etc. Nanofluid has more thermal conductivity compared to the base fluids. As such, the nanofluid has more heat transfer capacity than the base fluids. In order to study nanofluid flow problems, we need to solve related nonlinear differential equations analytically or numerically. But in most cases, we may not get an analytical solution. Accordingly, the related nonlinear differential equations need to be solved by efficient numerical methods.Accordingly, this book addresses various challenging problems related to nanofluid flow. In this regard, different efficient numerical methods such as homotopy perturbation method, Galerkin's method, and least square method are included. Further, the above practical problems are validated in special cases. We believe that this book will be very beneficial for readers who want firsthand knowledge on how to solve nanofluid flow problems. Codice articolo 9783031796562
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -In general, nanofluid is suspension of nanometer-sized particle in base fluids such as water, oil, ethylene glycol mixture etc. Nanofluid has more thermal conductivity compared to the base fluids. As such, the nanofluid has more heat transfer capacity than the base fluids. In order to study nanofluid flow problems, we need to solve related nonlinear differential equations analytically or numerically. But in most cases, we may not get an analytical solution. Accordingly, the related nonlinear differential equations need to be solved by efficient numerical methods.Accordingly, this book addresses various challenging problems related to nanofluid flow. In this regard, different efficient numerical methods such as homotopy perturbation method, Galerkin's method, and least square method are included. Further, the above practical problems are validated in special cases. We believe that this book will be very beneficial for readers who want firsthand knowledge on how to solve nanofluid flow problems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 92 pp. Englisch. Codice articolo 9783031796562
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 1st edition NO-PA16APR2015-KAP. Codice articolo 26394683257
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18394683251
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 401726630
Quantità: 4 disponibili