This book conducts a comprehensive and detailed survey of the recent research efforts in edge intelligence. The authors first review the background and present motivation for AI running at the network edge. The book then provides an overview of the overarching architectures, frameworks, and emerging key technologies for deep learning models toward training/inference at the network edge. To illustrate the research problems for edge intelligence, the book also showcases four of the authors' own research projects on edge intelligence, ranging from rigorous theoretical analysis to studies based on realistic implementation. This second edition incorporates the latest research in this rapidly developing area. The authors also highlight the current applications and future research opportunities for edge intelligence.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Sen Lin, Ph.D., is an Assistant Professor in the Department of Computer Science at the University of Houston. He received his Ph.D. degree from Arizona State University, M.S. from HKUST and B.E. from Zhejiang University. His research interests broadly fall in the intersection of machine learning and wireless networking. Currently, his research focuses on developing algorithms and theories in continual learning, meta-learning, reinforcement learning, adversarial machine learning and bilevel optimization, with applications in multiple domains, e.g., edge computing, security, network control.
Zhi Zhou, Ph.D., is an Associate Professor in the School of Computer Science and Engineering at Sun Yat-sen University. He earned his B.S., M.E., and Ph.D. degrees from Huazhong University of Science and Technology. His primary research interests encompass cloud computing, edge computing, and distributed systems.
Zhaofeng Zhang, Ph.D., isa Postdoctoral Researcher at School of Computing and Augmented Intelligence at Arizona State University. He received his B.Eng. degree in Electrical Engineering from Huazhong University of Science and Technology. He received his M.S. and Ph.D. degree in Electrical Engineering from Arizona State University. His research interests include edge computing, statistical machine learning, deep learning, and optimization.
Xu Chen, Ph.D., is a Full Professor and Assistant Dean at the School of Computer Science and Engineering at Sun Yat-sen University. He received his Ph.D. in Information Engineering from The Chinese University of Hong Kong. His research interests include edge computing, AI for networking, game theory, deep learning, and dynamic optimization.
Junshan Zhang, Ph.D. is a Professor in the Electrical and Computer Engineering Department at the University of California, Davis. He received his Ph.D. from the School of ECE at Purdue University. His research interests fall in the general field of information networks and data science, including edge intelligence, reinforcement learning, continual learning, network optimization and control, and game theory, with applications in connected and automated vehicles, 5G and beyond, wireless networks, IoT data privacy/security, and smart grid.
This book conducts a comprehensive and detailed survey of the recent research efforts in edge intelligence. The authors first review the background and present motivation for AI running at the network edge. The book then provides an overview of the overarching architectures, frameworks, and emerging key technologies for deep learning models toward training/inference at the network edge. To illustrate the research problems for edge intelligence, the book also showcases four of the authors' own research projects on edge intelligence, ranging from rigorous theoretical analysis to studies based on realistic implementation. This second edition incorporates the latest research in this rapidly developing area. The authors also highlight the current applications and future research opportunities for edge intelligence.
In addition, this book:
About the Authors
Sen Lin, Ph.D., is an Assistant Professor in the Department of Computer Science at the University of Houston.
Zhi Zhou, Ph.D., is an Associate Professor in the School of Computer Science and Engineering at Sun Yat-sen University.
Zhaofeng Zhang, Ph.D., isa Postdoctoral Researcher at School of Computing and Augmented Intelligence at Arizona State University.
Xu Chen, Ph.D., is a Full Professor and Assistant Dean at the School of Computer Science and Engineering at Sun Yat-sen University.
Junshan Zhang, Ph.D. is a Professor in the Electrical and Computer Engineering Department at the University of California, Davis.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Codice articolo 2089459554
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book conducts a comprehensive and detailed survey of the recent research efforts in edge intelligence. The authors first review the background and present motivation for AI running at the network edge. The book then provides an overview of the overarching architectures, frameworks, and emerging key technologies for deep learning models toward training/inference at the network edge. To illustrate the research problems for edge intelligence, the book also showcases four of the authors' own research projects on edge intelligence, ranging from rigorous theoretical analysis to studies based on realistic implementation. This second edition incorporates the latest research in this rapidly developing area. The authors also highlight the current applications and future research opportunities for edge intelligence. 299 pp. Englisch. Codice articolo 9783031845628
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book conducts a comprehensive and detailed survey of the recent research efforts in edge intelligence. The authors first review the background and present motivation for AI running at the network edge. The book then provides an overview of the overarching architectures, frameworks, and emerging key technologies for deep learning models toward training/inference at the network edge. To illustrate the research problems for edge intelligence, the book also showcases four of the authors' own research projects on edge intelligence, ranging from rigorous theoretical analysis to studies based on realistic implementation. This second edition incorporates the latest research in this rapidly developing area. The authors also highlight the current applications and future research opportunities for edge intelligence. Codice articolo 9783031845628
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -This book conducts a comprehensive and detailed survey of the recent research efforts in edge intelligence. The authors first review the background and present motivation for AI running at the network edge. The book then provides an overview of the overarching architectures, frameworks, and emerging key technologies for deep learning models toward training/inference at the network edge. To illustrate the research problems for edge intelligence, the book also showcases four of the authors' own research projects on edge intelligence, ranging from rigorous theoretical analysis to studies based on realistic implementation. This second edition incorporates the latest research in this rapidly developing area. The authors also highlight the current applications and future research opportunities for edge intelligence.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 316 pp. Englisch. Codice articolo 9783031845628
Quantità: 2 disponibili
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo YHTW1YXUKX
Quantità: Più di 20 disponibili