Domain Decomposition Methods in Optimal Control of Partial Differential Equations: 148 - Brossura

Lagnese, John E. E.; Leugering, Günter

 
9783034896108: Domain Decomposition Methods in Optimal Control of Partial Differential Equations: 148

Sinossi

While domain decomposition methods have a long history dating back well over one hundred years, it is only during the last decade that they have
become a major tool in numerical analysis of partial differential equations.
This monograph considers problems of optimal control for partial differential equations of elliptic and, more importantly, of hyperbolic types on networked domains. The main goal is to describe, develop and analyze iterative space and time domain decompositions of such problems on the infinite dimensional level.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1 Introduction.- 2 Background Material on Domain Decomposition.- 2.1 Introduction.- 2.2 Domain Decomposition for 1-d Problems.- 2.2.1 Unbounded Domains.- 2.2.2 Bounded Domains.- 2.2.3 Semi-discretization.- 2.3 Domain Decomposition Methods for Elliptic Problems.- 2.3.1 Review of Basic Methods.- 2.3.2 Virtual Controls.- 2.3.3 The Basic Algorithm of P.-L. Lions.- 2.3.4 An Augmented Lagrangian Formulation.- 2.3.5 General Elliptic Problems and More General Splittings.- 2.3.6 An a Posteriori Error Estimate.- 2.3.7 Interpretation as a Damped Richardson iteration.- 2.3.8 A Serial One-Dimensional Problem.- 3 Partial Differential Equations on Graphs.- 3.1 Introduction.- 3.2 Partial Differential Operators on Graphs.- 3.3 Elliptic Problems on Graphs.- 3.3.2 Domain Decomposition.- 3.3.3 Convergence.- 3.3.4 Interpretation as a Richardson Iteration.- 3.4 Hyperbolic Problems on Graphs.- 3.4.1 The Model.- 3.4.2 The Domain Decomposition Procedure.- 4 Optimal Control of Elliptic Problems.- 4.1 Introduction.- 4.2 Distributed Controls.- 4.2.2 Domain Decomposition.- 4.2.3 A Complex Helmholtz Problem and its Decomposition.- 4.2.4 Convergence.- 4.2.5 Methods for Elliptic Optimal Control Problems.- 4.2.6 An A Posteriori Error Estimate.- 4.3 Boundary Controls.- 4.3.2 Domain Decomposition.- 4.3.3 Convergence.- 4.3.4 An A Posteriori Error Estimate.- 5 Control of Partial Differential Equations on Graphs.- 5.1 Introduction.- 5.2 Elliptic Problems.- 5.2.1 The Global Optimal Control Problem on a Graph.- 5.2.2 Domain Decomposition.- 5.2.3 Distributed Controls.- 5.2.4 Boundary Controls.- 5.3 Hyperbolic Problems.- 5.3.1 The Global Optimal Control Problem on a Graph.- 5.3.2 The Domain Decomposition Procedure.- 6 Control of Dissipative Wave Equations.- 6.1 Introduction.- 6.2 Optimal Dissipative Boundary Control.- 6.2.1 Setting the Problem.- 6.2.2 Existence and Regularity of Solutions.- 6.2.3 The Global Optimality System.- 6.3 Time Domain Decomposition.- 6.3.1 Description of the Algorithm.- 6.3.2 Convergence of the Iterates.- 6.3.3 A Posteriori Error Estimates.- 6.3.4 Extension to General Dissipative Control Systems.- 6.4 Decomposition of the Spatial Domain.- 6.4.1 Description of the Algorithm.- 6.4.2 Convergence of the Iterates.- 6.4.3 A Posteriori Error Estimates.- 6.5 Space and Time Domain Decomposition.- 6.5.1 Sequential Space-Time Domain Decomposition.- 6.5.2 Sequential Time-Space Domain Decomposition.- 7 Boundary Control of Maxwell’s System.- 7.1 Introduction.- 7.2 Optimal Dissipative Boundary Control.- 7.2.1 Setting the Problem.- 7.2.2 Existence and Uniqueness of Solution.- 7.2.3 The Global Optimality System.- 7.3 Time Domain Decomposition.- 7.3.1 Description of the Algorithm.- 7.3.2 Convergence of the Iterates.- 7.3.3 A Posteriori Error Estimates.- 7.4 Decomposition of the Spatial Domain.- 7.4.1 Description of the Algorithm.- 7.4.2 Convergence of the Iterates.- 7.4.3 A Posteriori Error Estimates.- 7.5 Time and Space Domain Decomposition.- 7.5.1 Sequential Space-Time Domain Decomposition.- 7.5.2 Sequential Time-Space Domain Decomposition.- 8 Control of Conservative Wave Equations.- 8.1 Introduction.- 8.2 Optimal Boundary Control.- 8.2.1 Setting the Problem.- 8.2.2 Existence and Regularity of Solutions.- 8.2.3 The Global Optimality System.- 8.3 Time Domain Decomposition.- 8.3.1 Description of the Algorithm.- 8.3.2 Convergence of the Iterates.- 8.3.3 A Posteriori Error Estimates.- 8.3.4 Extension to General Conservative Control Systems.- 8.4 Decomposition of the Spatial Domain.- 8.4.1 The Local Optimality Systems.- 8.4.2 The Domain Decomposition Algorithm.- 8.4.3 Convergence of the Iterates.- 8.5 The Exact Reachability Problem.- 8.5.1 The Global Optimality System.- 8.5.2 The Limit of the Local Optimality Systems.- 8.5.3 Application to Domain Decomposition.- 8.5.4 Convergence to the Global Optimality System.- 9 Domain Decomposition for 2-D Networks.- 9.1 Elliptic Systems on 2-D Networks.- 9.1.2 Examples.- 9.1.3 Existence and Uniqueness of Solutions.- 9.1.4 Domain Decomposition.- 9.1.5 Convergence of the Algorithm.- 9.2 Optimal Control on 2-D Networks.- 9.2.1 Optimal Final Value Control.- 9.2.2 Existence and Regularity of Solutions.- 9.3 Decomposition of the Spatial Domain.- 9.3.2 The Decomposition Algorithm.- 9.3.3 Convergence of the Algorithm.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9783764321949: Domain Decomposition Methods In Optimal Control of Partial Differential Equations: 148

Edizione in evidenza

ISBN 10:  3764321946 ISBN 13:  9783764321949
Casa editrice: Birkhauser, 2004
Rilegato