For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques.
Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides:
Graduate students pursuing courses in model predictive control or more generally in ad
vanced or process control and senior undergraduates in need of a specialized treatment will findPredictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Both authors have lectured and tutored undergraduate students, and have supervised many final year undergraduate projects and doctoral students in control engineering at the Department of Engineering Science, University of Oxford (Doctor Cannon s university teaching career spans 20 years whereas Professor Kouvaritakis spans more than 40 years). They have also been active in research, publishing hundreds of articles, in prestigious control journals. In addition they have been Investigators and Principal Investigators in several research projects, some of which are connected with industrial partners.
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques.
Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides:
Graduate students pursuing courses in
model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will findPredictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,80 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Gebunden. Condizione: New. Codice articolo 61430608
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides: extensive use of illustrative examples; sample problems; and discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage. Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses. 384 pp. Englisch. Codice articolo 9783319248516
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides: extensive use of illustrative examples; sample problems; and discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage. Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses. Codice articolo 9783319248516
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques.Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides:extensive use of illustrative examples;sample problems; anddiscussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage.Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 384 pp. Englisch. Codice articolo 9783319248516
Quantità: 2 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Hardcover. Condizione: Like New. Like New. book. Codice articolo ERICA79733192485106
Quantità: 1 disponibili