Text analytics is a field that lies on the interface of information retrieval,machine learning, and natural language processing, and this textbook carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this textbook is organized into three categories:
- Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for machine learning from text such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis.
- Domain-sensitive mining: Chapters 8 and 9 discuss the learning methods from text when combined with different domains such as multimedia and the Web. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods.
- Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection.
This textbook covers machine learning topics for text in detail. Since the coverage is extensive,multiple courses can be offered from the same book, depending on course level. Even though the presentation is text-centric, Chapters 3 to 7 cover machine learning algorithms that are often used indomains beyond text data. Therefore, the book can be used to offer courses not just in text analytics but also from the broader perspective of machine learning (with text as a backdrop).
This textbook targets graduate students in computer science, as well as researchers, professors, and industrial practitioners working in these related fields. This textbook is accompanied with a solution manual for classroom teaching.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Text analytics is a field that lies on the interface of information retrieval, machine learning,
and natural language processing. This book carefully covers a coherently organized framework
drawn from these intersecting topics. The chapters of this book span three broad categories:
1. Basic algorithms: Chapters 1 through 8 discuss the classical algorithms for text analytics
such as preprocessing, similarity computation, topic modeling, matrix factorization,
clustering, classification, regression, and ensemble analysis.
2. Domain-sensitive learning: Chapters 8 and 9 discuss learning models in heterogeneous
settings such as a combination of text with multimedia or Web links. The problem of
information retrieval and Web search is also discussed in the context of its relationship
with ranking and machine learning methods.
3. Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and
natural language applications, such as feature engineering, neural language models,
deep learning, text summarization, information extraction, opinion mining, text segmentation,
and event detection.
This book covers text analytics and machine learning topics from the simple to the advanced.
Since the coverage is extensive, multiple courses can be offered from the same book,
depending on course level.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 4,50 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 17,11 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: medimops, Berlin, Germania
Condizione: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Codice articolo M03319735306-V
Quantità: 1 disponibili
Da: WorldofBooks, Goring-By-Sea, WS, Regno Unito
Paperback. Condizione: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Codice articolo GOR013962239
Quantità: 1 disponibili
Da: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germania
xxiii, 493 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Codice articolo 1459LB
Quantità: 2 disponibili
Da: SecondSale, Montgomery, IL, U.S.A.
Condizione: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00090815136
Quantità: 2 disponibili
Da: BGV Books LLC, Murray, KY, U.S.A.
Condizione: Good. Exact ISBN match. Immediate shipping. No funny business. Codice articolo 9783319735306
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 30598039-n
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 30598039
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The first textbook to cover machine learning of text in a holistic way, which includes aspects of mining, language modeling, and deep learningIncludes many examples to simplify exposition and facilitate in learning. Semantically understandable. Codice articolo 196939954
Quantità: Più di 20 disponibili
Da: Toscana Books, AUSTIN, TX, U.S.A.
Hardcover. Condizione: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Codice articolo Scanned3319735306
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 493 pages. 10.00x7.00x1.25 inches. In Stock. This item is printed on demand. Codice articolo __3319735306
Quantità: 2 disponibili