A major step towards the understanding of differential operators on singular manifolds consists in the construction of algebras of pseudodifferential operators that will allow the solution of natural elliptic equations in terms of parametrix constructions. This leads to questions of elliptic regularity, Fredholm and index theory. The volume contains contributions to the theory of boundary value problems without the transmission property under the aspect of variable branching asymptotics, on commutator characterizations in and the submultiplicativity of Boutet de Monvel's algebra, the construction of a pseudodifferential calculus for boundary value problems on manifolds with conical singularities, and on heat kernel estimates for elliptic singular operators. Contributions from the area of Mathematical Physics address the problems of reduction and eigenstates in deformation quantization and spectral theory for Schr?dinger operators with electromagnetic potential.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Editors' affiliations:
Michael Demuth, Professor, Technical University of Clausthal. Elmar Schrohe, Dr. rer. nat., University of Potsdam. Bert-Wolfgang Schulze, Professor, University of Potsdam, member of the editorial board of "Annals of Global Analysis and Geometry" and of the advisory board of "Mathematische Nachrichten".
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
(nessuna copia disponibile)
Cerca: Inserisci un desiderataNon riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!
Inserisci un desiderata