The most frequently used method for the numerical integration of parabolic differential equa tions is the method of lines, where one first uses a discretization of space derivatives by finite differences or finite elements and then uses some time-stepping method for the the solution of resulting system of ordinary differential equations. Such methods are, at least conceptually, easy to perform. However, they can be expensive if steep gradients occur in the solution, stability must be controlled, and the global error control can be troublesome. This paper considers a simultaneaus discretization of space and time variables for a one-dimensional parabolic equation on a relatively long time interval, called 'time-slab'. The discretization is repeated or adjusted for following 'time-slabs' using continuous finite element approximations. In such a method we utilize the efficiency of finite elements by choosing a finite element mesh in the time-space domain where the finite element mesh has been adjusted to steep gradients of the solution both with respect to the space and the time variables. In this way we solve all the difficulties with the classical approach since stability, discretization error estimates and global error control are automatically satisfied. Such a method has been discussed previously in [3] and [4]. The related boundary value techniques or global time integration for systems of ordinary differential equations have been discussed in several papers, see [12] and the references quoted therein.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Extension of an Abstract Theory of Discretization Algorithms to Problems with only Weak and Non-Unique Solutions.- A Time-Space Finite Element Method for Nonlinear Convection Diffusion Problems.- Parallelization of Robust Multi-Grid Methods: ILU Factorization and Frequency Decomposition Method.- The Influence of Reentrant Corners in the Numerical Approximation of Viscous Flow Problems.- A Finite Discretization with Improved Accuracy for the Compressible Navier-Stokes Equations.- Calculation of Viscous Incompressible Flows in Time-Dependent Domains.- Two-Dimensional Wind Flow over Buildings.- Laminar Shock/Boundary-Layer Interaction — A Numerical Test Problem.- Comparison of Upwind and Central Finite-Difference Methods for the Compressible Navier-Stokes Equations.- A Comparison of Finite-Difference Approximations for the Stream Function Formulation of the Incompressible Navier-Stokes Equations.- NSFLEX — An Implicit Relaxation Method for the Navier-Stokes Equations for a Wide Range of Mach Numbers.- A Multigrid Algorithm for the Incompressible Navier-Stokes Equations.- Analysis and Application of a Line Solver for the Recirculating Flows Using Multigrid Methods.- A Posteriori Error Estimators and Adaptive Mesh-Refinement for a Mixed Finite Element Discretization of the Navier-Stokes Equations.- R-Transforming Smoothers for the Incompressible Navier-Stokes Equations.- List of Participants.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,78 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Anybook.com, Lincoln, Regno Unito
Condizione: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,400grams, ISBN:3528076305. Codice articolo 8241839
Quantità: 1 disponibili
Da: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Germania
gebundene Ausgabe. Condizione: Gut. 176 Seiten In ENGLISCHER Sprache. Der Erhaltungszustand des hier angebotenen Werks ist trotz seiner Bibliotheksnutzung sehr sauber. Es befindet sich neben dem Rückenschild lediglich ein Bibliotheksstempel im Buch; ordnungsgemäß entwidmet. Leichte altersbedingte Anbräunung des Papiers. Sprache: Englisch Gewicht in Gramm: 335. Codice articolo 2002449
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Extension of an Abstract Theory of Discretization Algorithms to Problems with only Weak and Non-Unique Solutions.- A Time-Space Finite Element Method for Nonlinear Convection Diffusion Problems.- Parallelization of Robust Multi-Grid Methods: ILU Factorizati. Codice articolo 4867122
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The most frequently used method for the numerical integration of parabolic differential equa tions is the method of lines, where one first uses a discretization of space derivatives by finite differences or finite elements and then uses some time-stepping method for the the solution of resulting system of ordinary differential equations. Such methods are, at least conceptually, easy to perform. However, they can be expensive if steep gradients occur in the solution, stability must be controlled, and the global error control can be troublesome. This paper considers a simultaneaus discretization of space and time variables for a one-dimensional parabolic equation on a relatively long time interval, called 'time-slab'. The discretization is repeated or adjusted for following 'time-slabs' using continuous finite element approximations. In such a method we utilize the efficiency of finite elements by choosing a finite element mesh in the time-space domain where the finite element mesh has been adjusted to steep gradients of the solution both with respect to the space and the time variables. In this way we solve all the difficulties with the classical approach since stability, discretization error estimates and global error control are automatically satisfied. Such a method has been discussed previously in [3] and [4]. The related boundary value techniques or global time integration for systems of ordinary differential equations have been discussed in several papers, see [12] and the references quoted therein. 167 pp. Deutsch. Codice articolo 9783528076306
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The most frequently used method for the numerical integration of parabolic differential equa tions is the method of lines, where one first uses a discretization of space derivatives by finite differences or finite elements and then uses some time-stepping method for the the solution of resulting system of ordinary differential equations. Such methods are, at least conceptually, easy to perform. However, they can be expensive if steep gradients occur in the solution, stability must be controlled, and the global error control can be troublesome. This paper considers a simultaneaus discretization of space and time variables for a one-dimensional parabolic equation on a relatively long time interval, called 'time-slab'. The discretization is repeated or adjusted for following 'time-slabs' using continuous finite element approximations. In such a method we utilize the efficiency of finite elements by choosing a finite element mesh in the time-space domain where the finite element mesh has been adjusted to steep gradients of the solution both with respect to the space and the time variables. In this way we solve all the difficulties with the classical approach since stability, discretization error estimates and global error control are automatically satisfied. Such a method has been discussed previously in [3] and [4]. The related boundary value techniques or global time integration for systems of ordinary differential equations have been discussed in several papers, see [12] and the references quoted therein. Codice articolo 9783528076306
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -The most frequently used method for the numerical integration of parabolic differential equa tions is the method of lines, where one first uses a discretization of space derivatives by finite differences or finite elements and then uses some time-stepping method for the the solution of resulting system of ordinary differential equations. Such methods are, at least conceptually, easy to perform. However, they can be expensive if steep gradients occur in the solution, stability must be controlled, and the global error control can be troublesome. This paper considers a simultaneaus discretization of space and time variables for a one-dimensional parabolic equation on a relatively long time interval, called 'time-slab'. The discretization is repeated or adjusted for following 'time-slabs' using continuous finite element approximations. In such a method we utilize the efficiency of finite elements by choosing a finite element mesh in the time-space domain where the finite element mesh has been adjusted to steep gradients of the solution both with respect to the space and the time variables. In this way we solve all the difficulties with the classical approach since stability, discretization error estimates and global error control are automatically satisfied. Such a method has been discussed previously in [3] and [4]. The related boundary value techniques or global time integration for systems of ordinary differential equations have been discussed in several papers, see [12] and the references quoted therein.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 176 pp. Deutsch. Codice articolo 9783528076306
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783528076306_new
Quantità: Più di 20 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783528076306
Quantità: 2 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9783528076306
Quantità: 10 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 178. Codice articolo 2697559599
Quantità: 4 disponibili