Recently, increasing interest has been shown in applying the concept of Pareto-optimality to machine learning, particularly inspired by the successful developments in evolutionary multi-objective optimization. It has been shown that the multi-objective approach to machine learning is particularly successful to improve the performance of the traditional single objective machine learning methods, to generate highly diverse multiple Pareto-optimal models for constructing ensembles models and, and to achieve a desired trade-off between accuracy and interpretability of neural networks or fuzzy systems. This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Multi-Objective Clustering, Feature Extraction and Feature Selection.- Feature Selection Using Rough Sets.- Multi-Objective Clustering and Cluster Validation.- Feature Selection for Ensembles Using the Multi-Objective Optimization Approach.- Feature Extraction Using Multi-Objective Genetic Programming.- Multi-Objective Learning for Accuracy Improvement.- Regression Error Characteristic Optimisation of Non-Linear Models.- Regularization for Parameter Identification Using Multi-Objective Optimization.- Multi-Objective Algorithms for Neural Networks Learning.- Generating Support Vector Machines Using Multi-Objective Optimization and Goal Programming.- Multi-Objective Optimization of Support Vector Machines.- Multi-Objective Evolutionary Algorithm for Radial Basis Function Neural Network Design.- Minimizing Structural Risk on Decision Tree Classification.- Multi-objective Learning Classifier Systems.- Multi-Objective Learning for Interpretability Improvement.- Simultaneous Generation of Accurate and Interpretable Neural Network Classifiers.- GA-Based Pareto Optimization for Rule Extraction from Neural Networks.- Agent Based Multi-Objective Approach to Generating Interpretable Fuzzy Systems.- Multi-objective Evolutionary Algorithm for Temporal Linguistic Rule Extraction.- Multiple Objective Learning for Constructing Interpretable Takagi-Sugeno Fuzzy Model.- Multi-Objective Ensemble Generation.- Pareto-Optimal Approaches to Neuro-Ensemble Learning.- Trade-Off Between Diversity and Accuracy in Ensemble Generation.- Cooperative Coevolution of Neural Networks and Ensembles of Neural Networks.- Multi-Objective Structure Selection for RBF Networks and Its Application to Nonlinear System Identification.- Fuzzy Ensemble Design through Multi-Objective Fuzzy Rule Selection.- Applications of Multi-Objective Machine Learning.- Multi-Objective Optimisation for Receiver Operating Characteristic Analysis.- Multi-Objective Design of Neuro-Fuzzy Controllers for Robot Behavior Coordination.- Fuzzy Tuning for the Docking Maneuver Controller of an Automated Guided Vehicle.- A Multi-Objective Genetic Algorithm for Learning Linguistic Persistent Queries in Text Retrieval Environments.- Multi-Objective Neural Network Optimization for Visual Object Detection.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 105,00 per la spedizione da Germania a U.S.A.
Destinazione, tempi e costiGRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-88752
Quantità: 1 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-266552
Quantità: 1 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Codice articolo 2845763/2
Quantità: 2 disponibili
Da: ALLBOOKS1, Direk, SA, Australia
Brand new book. Fast ship. Please provide full street address as we are not able to ship toPOboxaddress. Codice articolo SHUB266552
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020165017
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540306764_new
Quantità: Più di 20 disponibili
Da: BennettBooksLtd, San Diego, NV, U.S.A.
hardcover. Condizione: New. In shrink wrap. Looks like an interesting title! Codice articolo Q-3540306765
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 676. Codice articolo 26299242
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Selected collection of recent research on multi-objective approach to machine learningRecent developments in evolutionary multi-objective optimizationApplies the concept of Pareto-optimality to machine learning Recently. Codice articolo 4887431
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 676 Illus. Codice articolo 7548725
Quantità: 1 disponibili