Basic Stochastic Processes: A Course Through Exercises [Lingua inglese] - Brossura

Libro 39 di 87: Springer Undergraduate Mathematics

Brzezniak, Zdzislaw

 
9783540761754: Basic Stochastic Processes: A Course Through Exercises [Lingua inglese]

Sinossi

Stochastic processes are tools used widely by statisticians and researchers working in the mathematics of finance. This book for self-study provides a detailed treatment of conditional expectation and probability, a topic that in principle belongs to probability theory, but is essential as a tool for stochastic processes. The book centers on exercises as the main means of explanation.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Recensione

This is probably one of the best books to begin learning about the sometimes complex topic of stochastic calculus and stochastic processes from a more mathematical approach. Some literature are often accused of unnecessarily complicating the subject when applied to areas of finance. With this book you are allowed to explore the rigorous side of stochastic calculus, yet maintain a physical insight of what is going on. The authors have concentrated on the most important and useful topics that are encountered in common physical and financial systems --www.quantnotes.com

Contenuti

1. Review of Probability.- 1.1 Events and Probability.- 1.2 Random Variables.- 1.3 Conditional Probability and Independence.- 1.4 Solutions.- 2. Conditional Expectation.- 2.1 Conditioning on an Event.- 2.2 Conditioning on a Discrete Random Variable.- 2.3 Conditioning on an Arbitrary Random Variable.- 2.4 Conditioning on a ?-Field.- 2.5 General Properties.- 2.6 Various Exercises on Conditional Expectation.- 2.7 Solutions.- 3. Martingales in Discrete.- 3.1 Sequences of Random Variables.- 3.2 Filtrations.- 3.3 Martingales.- 3.4 Games of Chance.- 3.5 Stopping Times.- 3.6 Optional Stopping Theorem.- 3.7 Solutions.- 4. Martingale Inequalities and Convergence.- 4.1 Doob’s Martingale Inequalities.- 4.2 Doob’s Martingale Convergence Theorem.- 4.3 Uniform Integrability and L1 Convergence of Martingales.- 4.4 Solutions.- 5. Markov Chains.- 5.1 First Examples and Definitions.- 5.2 Classification of States.- 5.3 Long-Time Behaviour of Markov Chains: General Case.- 5.4 Long-Time Behaviour of Markov Chains with Finite State Space.- 5.5 Solutions.- 6. Stochastic Processes in Continuous Time.- 6.1 General Notions.- 6.2 Poisson Process.- 6.2.1 Exponential Distribution and Lack of Memory.- 6.2.2 Construction of the Poisson Process.- 6.2.3 Poisson Process Starts from Scratch at Time t.- 6.2.4 Various Exercises on the Poisson Process.- 6.3 Brownian Motion.- 6.3.1 Definition and Basic Properties.- 6.3.2 Increments of Brownian Motion.- 6.3.3 Sample Paths.- 6.3.4 Doob’s Maximal L2 Inequality for Brownian Motion.- 6.3.5 Various Exercises on Brownian Motion.- 6.4 Solutions.- 7. Itô Stochastic Calculus.- 7.1 Itô Stochastic Integral: Definition.- 7.2 Examples.- 7.3 Properties of the Stochastic Integral.- 7.4 Stochastic Differential and Itô Formula.- 7.5 Stochastic Differential Equations.- 7.6 Solutions.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9781447105343: Basic Stochastic Processes: A Course Through Exercises

Edizione in evidenza

ISBN 10:  1447105346 ISBN 13:  9781447105343
Casa editrice: Springer, 2011
Brossura