The term “soft computing” applies to variants of and combinations under the four broad categories of evolutionary computing, neural networks, fuzzy logic, and Bayesian statistics. Although each one has its separate strengths, the complem- tary nature of these techniques when used in combination (hybrid) makes them a powerful alternative for solving complex problems where conventional mat- matical methods fail. The use of intelligent and soft computing techniques in the field of geo- chanical and pavement engineering has steadily increased over the past decade owing to their ability to admit approximate reasoning, imprecision, uncertainty and partial truth. Since real-life infrastructure engineering decisions are made in ambiguous environments that require human expertise, the application of soft computing techniques has been an attractive option in pavement and geomecha- cal modeling. The objective of this carefully edited book is to highlight key recent advances made in the application of soft computing techniques in pavement and geo- chanical systems. Soft computing techniques discussed in this book include, but are not limited to: neural networks, evolutionary computing, swarm intelligence, probabilistic modeling, kernel machines, knowledge discovery and data mining, neuro-fuzzy systems and hybrid approaches. Highlighted application areas include infrastructure materials modeling, pavement analysis and design, rapid interpre- tion of nondestructive testing results, porous asphalt concrete distress modeling, model parameter identification, pavement engineering inversion problems, s- grade soils characterization, and backcalculation of pavement layer thickness and moduli.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
The use of intelligent and soft computing techniques in the field of geomechanical and pavement engineering has steadily increased over the past decade owing to their ability to admit approximate reasoning, imprecision, uncertainty and partial truth. Since real-life infrastructure engineering decisions are made in ambiguous environments that require human expertise, the application of soft computing techniques has been an attractive option in pavement and geomechanical modeling. The objective of this carefully edited book is to highlight key recent advances made in the application of soft computing techniques in pavement and geomechanical systems. Soft computing techniques discussed in this book include, but are not limited to: neural networks, evolutionary computing, swarm intelligence, probabilistic modeling, kernel machines, knowledge discovery and data mining, neuro-fuzzy systems and hybrid approaches. Highlighted application areas include infrastructure materials modeling, pavement analysis and design, rapid interpretation of nondestructive testing results, porous asphalt concrete distress modeling, model parameter identification, pavement engineering inversion problems, subgrade soils characterization, and backcalculation of pavement layer thickness and moduli. Researchers and practitioners engaged in developing and applying soft computing and intelligent systems principles to solving real-world infrastructure engineering problems will find this book very useful. This book will also serve as an excellent state-of-the-art reference material for graduate and postgraduate students in transportation infrastructure engineering.
Rapid Interpretation of Nondestructive Testing Results Using Neural Networks.- Probabilistic Inversion: A New Approach to Inversion Problems in Pavement and Geomechanical Engineering.- Neural Networks Application in Pavement Infrastructure Materials.- Backcalculation of Flexible Pavements Using Soft Computing.- Knowledge Discovery and Data Mining Using Artificial Intelligence to Unravel Porous Asphalt Concrete in the Netherlands.- Backcalculation of Pavement Layer Thickness and Moduli Using Adaptive Neuro-fuzzy Inference System.- Case Studies of Asphalt Pavement Analysis/Design with Application of the Genetic Algorithm.- Extended Kalman Filter and Its Application in Pavement Engineering.- Hybrid Stochastic Global Optimization Scheme for Rapid Pavement Backcalculation.- Regression and Artificial Neural Network Modeling of Resilient Modulus of Subgrade Soils for Pavement Design Applications.- Application of Soft Computing Techniques to Expansive Soil Characterization.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut - Neubindung, 1. Auflage 2009, Buchschnitt leicht verkürzt | Seiten: 323 | Sprache: Englisch | Produktart: Bücher. Codice articolo 5945241/12
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Codice articolo 5044361
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The term 'soft computing' applies to variants of and combinations under the four broad categories of evolutionary computing, neural networks, fuzzy logic, and Bayesian statistics. Although each one has its separate strengths, the complem- tary nature of these techniques when used in combination (hybrid) makes them a powerful alternative for solving complex problems where conventional mat- matical methods fail. The use of intelligent and soft computing techniques in the field of geo- chanical and pavement engineering has steadily increased over the past decade owing to their ability to admit approximate reasoning, imprecision, uncertainty and partial truth. Since real-life infrastructure engineering decisions are made in ambiguous environments that require human expertise, the application of soft computing techniques has been an attractive option in pavement and geomecha- cal modeling. The objective of this carefully edited book is to highlight key recent advances made in the application of soft computing techniques in pavement and geo- chanical systems. Soft computing techniques discussed in this book include, but are not limited to: neural networks, evolutionary computing, swarm intelligence, probabilistic modeling, kernel machines, knowledge discovery and data mining, neuro-fuzzy systems and hybrid approaches. Highlighted application areas include infrastructure materials modeling, pavement analysis and design, rapid interpre- tion of nondestructive testing results, porous asphalt concrete distress modeling, model parameter identification, pavement engineering inversion problems, s- grade soils characterization, and backcalculation of pavement layer thickness and moduli. 325 pp. Englisch. Codice articolo 9783642045851
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The term 'soft computing' applies to variants of and combinations under the four broad categories of evolutionary computing, neural networks, fuzzy logic, and Bayesian statistics. Although each one has its separate strengths, the complem- tary nature of these techniques when used in combination (hybrid) makes them a powerful alternative for solving complex problems where conventional mat- matical methods fail. The use of intelligent and soft computing techniques in the field of geo- chanical and pavement engineering has steadily increased over the past decade owing to their ability to admit approximate reasoning, imprecision, uncertainty and partial truth. Since real-life infrastructure engineering decisions are made in ambiguous environments that require human expertise, the application of soft computing techniques has been an attractive option in pavement and geomecha- cal modeling. The objective of this carefully edited book is to highlight key recent advances made in the application of soft computing techniques in pavement and geo- chanical systems. Soft computing techniques discussed in this book include, but are not limited to: neural networks, evolutionary computing, swarm intelligence, probabilistic modeling, kernel machines, knowledge discovery and data mining, neuro-fuzzy systems and hybrid approaches. Highlighted application areas include infrastructure materials modeling, pavement analysis and design, rapid interpre- tion of nondestructive testing results, porous asphalt concrete distress modeling, model parameter identification, pavement engineering inversion problems, s- grade soils characterization, and backcalculation of pavement layer thickness and moduli. Codice articolo 9783642045851
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642045851_new
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783642045851
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020214645
Quantità: Più di 20 disponibili