Foundations of Computational Intelligence Volume 2: Approximation Reasoning: Theoretical Foundations and Applications Human reasoning usually is very approximate and involves various types of - certainties. Approximate reasoning is the computational modelling of any part of the process used by humans to reason about natural phenomena or to solve real world problems. The scope of this book includes fuzzy sets, Dempster-Shafer theory, multi-valued logic, probability, random sets, and rough set, near set and hybrid intelligent systems. Besides research articles and expository papers on t- ory and algorithms of approximation reasoning, papers on numerical experiments and real world applications were also encouraged. This Volume comprises of 12 chapters including an overview chapter providing an up-to-date and state-of-the research on the applications of Computational Intelligence techniques for - proximation reasoning. The Volume is divided into 2 parts: Part-I: Approximate Reasoning – Theoretical Foundations Part-II: Approximate Reasoning – Success Stories and Real World Applications Part I on Approximate Reasoning – Theoretical Foundations contains four ch- ters that describe several approaches of fuzzy and Para consistent annotated logic approximation reasoning. In Chapter 1, “Fuzzy Sets, Near Sets, and Rough Sets for Your Computational Intelligence Toolbox” by Peters considers how a user might utilize fuzzy sets, near sets, and rough sets, taken separately or taken together in hybridizations as part of a computational intelligence toolbox. In multi-criteria decision making, it is necessary to aggregate (combine) utility values corresponding to several criteria (parameters).
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Approximate Reasoning - Theoretical Foundations and Applications.- Fuzzy Sets, Near Sets, and Rough Sets for Your Computational Intelligence Toolbox.- Fuzzy without Fuzzy: Why Fuzzy-Related Aggregation Techniques Are Often Better Even in Situations without True Fuzziness.- Intermediate Degrees Are Needed for the World to Be Cognizable: Towards a New Justification for Fuzzy Logic Ideas.- Paraconsistent Annotated Logic Program Before-after EVALPSN and Its Application.- Approximate Reasoning - Success Stories and Real World Applications.- A Fuzzy Set Approach to Software Reliability Modeling.- Computational Methods for Investment Portfolio: The Use of Fuzzy Measures and Constraint Programming for Risk Management.- A Bayesian Solution to the Modifiable Areal Unit Problem.- Fuzzy Logic Control in Communication Networks.- Adaptation in Classification Systems.- Music Instrument Estimation in Polyphonic Sound Based on Short-Term Spectrum Match.- Ultrasound Biomicroscopy Glaucoma Images Analysis Based on Rough Set and Pulse Coupled Neural Network.- An Overview of Fuzzy C-Means Based Image Clustering Algorithms.
Human reasoning usually is very approximate and involves various types of uncertainties. Approximate reasoning is the computational modelling of any part of the process used by humans to reason about natural phenomena or to solve real world problems. The scope of this book includes fuzzy sets, Dempster-Shafer theory, multi-valued logic, probability, random sets, and rough set, near set and hybrid intelligent systems. Besides research articles and expository papers on theory and algorithms of approximation reasoning, papers on numerical experiments and real world applications were also encouraged. This Volume comprises of 12 chapters including an overview chapter providing an up-to-date and state-of-the research on the applications of Computational Intelligence techniques for approximation reasoning. The Volume is divided into 2 parts: Part-I: Approximate Reasoning – Theoretical Foundations and Part-II: Approximate Reasoning – Success Stories and Real World Applications.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,67 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiEUR 3,53 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020218369
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Second volume of a Reference work on the foundations of Computational IntelligenceDevoted to approximate reasoningFoundations of Computational Intelligence Volume 2: Approximation Reasoning: Theoretical Foundations and Applications Human r. Codice articolo 5049157
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Foundations of Computational Intelligence Volume 2: Approximation Reasoning: Theoretical Foundations and Applications Human reasoning usually is very approximate and involves various types of - certainties. Approximate reasoning is the computational modelling of any part of the process used by humans to reason about natural phenomena or to solve real world problems. The scope of this book includes fuzzy sets, Dempster-Shafer theory, multi-valued logic, probability, random sets, and rough set, near set and hybrid intelligent systems. Besides research articles and expository papers on t- ory and algorithms of approximation reasoning, papers on numerical experiments and real world applications were also encouraged. This Volume comprises of 12 chapters including an overview chapter providing an up-to-date and state-of-the research on the applications of Computational Intelligence techniques for - proximation reasoning. The Volume is divided into 2 parts: Part-I: Approximate Reasoning - Theoretical Foundations Part-II: Approximate Reasoning - Success Stories and Real World Applications Part I on Approximate Reasoning - Theoretical Foundations contains four ch- ters that describe several approaches of fuzzy and Para consistent annotated logic approximation reasoning. In Chapter 1, 'Fuzzy Sets, Near Sets, and Rough Sets for Your Computational Intelligence Toolbox' by Peters considers how a user might utilize fuzzy sets, near sets, and rough sets, taken separately or taken together in hybridizations as part of a computational intelligence toolbox. In multi-criteria decision making, it is necessary to aggregate (combine) utility values corresponding to several criteria (parameters). Codice articolo 9783642101830
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783642101830
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Foundations of Computational Intelligence Volume 2: Approximation Reasoning: Theoretical Foundations and Applications Human reasoning usually is very approximate and involves various types of - certainties. Approximate reasoning is the computational modelling of any part of the process used by humans to reason about natural phenomena or to solve real world problems. The scope of this book includes fuzzy sets, Dempster-Shafer theory, multi-valued logic, probability, random sets, and rough set, near set and hybrid intelligent systems. Besides research articles and expository papers on t- ory and algorithms of approximation reasoning, papers on numerical experiments and real world applications were also encouraged. This Volume comprises of 12 chapters including an overview chapter providing an up-to-date and state-of-the research on the applications of Computational Intelligence techniques for - proximation reasoning. The Volume is divided into 2 parts: Part-I: Approximate Reasoning - Theoretical Foundations Part-II: Approximate Reasoning - Success Stories and Real World Applications Part I on Approximate Reasoning - Theoretical Foundations contains four ch- ters that describe several approaches of fuzzy and Para consistent annotated logic approximation reasoning. In Chapter 1, 'Fuzzy Sets, Near Sets, and Rough Sets for Your Computational Intelligence Toolbox' by Peters considers how a user might utilize fuzzy sets, near sets, and rough sets, taken separately or taken together in hybridizations as part of a computational intelligence toolbox. In multi-criteria decision making, it is necessary to aggregate (combine) utility values corresponding to several criteria (parameters). 324 pp. Englisch. Codice articolo 9783642101830
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 324 68 Illus. Codice articolo 11289465
Quantità: 4 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642101830_new
Quantità: Più di 20 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 324. Codice articolo 1814417068
Quantità: 4 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA79736421018366
Quantità: 1 disponibili