Decision trees and decision rule systems are widely used in different applications
as algorithms for problem solving, as predictors, and as a way for
knowledge representation. Reducts play key role in the problem of attribute
(feature) selection. The aims of this book are (i) the consideration of the sets
of decision trees, rules and reducts; (ii) study of relationships among these
objects; (iii) design of algorithms for construction of trees, rules and reducts;
and (iv) obtaining bounds on their complexity. Applications for supervised
machine learning, discrete optimization, analysis of acyclic programs, fault
diagnosis, and pattern recognition are considered also. This is a mixture of
research monograph and lecture notes. It contains many unpublished results.
However, proofs are carefully selected to be understandable for students.
The results considered in this book can be useful for researchers in machine
learning, data mining and knowledge discovery, especially for those who are
working in rough set theory, test theory and logical analysis of data. The book
can be used in the creation of courses for graduate students.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Decision trees and decision rule systems are widely used in different applications
as algorithms for problem solving, as predictors, and as a way for
knowledge representation. Reducts play key role in the problem of attribute
(feature) selection. The aims of this book are (i) the consideration of the sets
of decision trees, rules and reducts; (ii) study of relationships among these
objects; (iii) design of algorithms for construction of trees, rules and reducts;
and (iv) obtaining bounds on their complexity. Applications for supervised
machine learning, discrete optimization, analysis of acyclic programs, fault
diagnosis, and pattern recognition are considered also. This is a mixture of
research monograph and lecture notes. It contains many unpublished results.
However, proofs are carefully selected to be understandable for students.
The results considered in this book can be useful for researchers in machine
learning, data mining and knowledge discovery, especially for those who are
working in rough set theory, test theory and logical analysis of data. The book
can be used in the creation of courses for graduate students.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 6,90 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut - Neubindung, Buchschnitt leicht verkürzt, Buchrücken leicht angestoßen, Ausg. 2011 | Seiten: 178 | Sprache: Englisch | Produktart: Bücher. Codice articolo 10681958/12
Quantità: 1 disponibili
Da: SpringBooks, Berlin, Germania
Hardcover. Condizione: Very Good. Unread, with a mimimum of shelfwear. Immediately dispatched from Germany. Codice articolo CEA-2402C-TEPPICHMILI-09-1000XS
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A rough set approach to combinatorial machine learning Presents applications for supervised machine learning, discrete optimization, analysis of acyclic programs, fault diagnosis and pattern recognition Written by leading experts in the fiel. Codice articolo 5052402
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642209949_new
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 2011 edition. 181 pages. 9.25x6.25x0.75 inches. In Stock. Codice articolo x-3642209947
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Neuware - Decision trees and decision rule systems are widely used in different applicationsas algorithms for problem solving, as predictors, and as a way forknowledge representation. Reducts play key role in the problem of attribute(feature) selection. The aims of this book are (i) the consideration of the setsof decision trees, rules and reducts; (ii) study of relationships among theseobjects; (iii) design of algorithms for construction of trees, rules and reducts;and (iv) obtaining bounds on their complexity. Applications for supervisedmachine learning, discrete optimization, analysis of acyclic programs, faultdiagnosis, and pattern recognition are considered also. This is a mixture ofresearch monograph and lecture notes. It contains many unpublished results.However, proofs are carefully selected to be understandable for students.The results considered in this book can be useful for researchers in machinelearning, data mining and knowledge discovery, especially for those who areworking in rough set theory, test theory and logical analysis of data. The bookcan be used in the creation of courses for graduate students. Codice articolo 9783642209949
Quantità: 2 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020220707
Quantità: Più di 20 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Hardcover. Condizione: Like New. Like New. book. Codice articolo ERICA79636422099476
Quantità: 1 disponibili